3 research outputs found

    On acceptance conditions for membrane systems: characterisations of L and NL

    Full text link
    In this paper we investigate the affect of various acceptance conditions on recogniser membrane systems without dissolution. We demonstrate that two particular acceptance conditions (one easier to program, the other easier to prove correctness) both characterise the same complexity class, NL. We also find that by restricting the acceptance conditions we obtain a characterisation of L. We obtain these results by investigating the connectivity properties of dependency graphs that model membrane system computations

    A characterisation of NL using membrane systems without charges and dissolution

    Get PDF
    Abstract. We apply techniques from complexity theory to a model of biological cellular membranes known as membrane systems or P-systems. Like circuits, membrane systems are defined as uniform families. To date, polynomial time uniformity has been the accepted uniformity notion for membrane systems. Here, we introduce the idea of using AC 0 and Luniformities and investigate the computational power of membrane systems under these tighter conditions. It turns out that the computational power of some systems is lowered from P to NL, so it seems that our tighter uniformities are more reasonable for these systems. Interestingly, other systems that are known to be lower bounded by P are shown to retain their computational power under the new uniformity conditions. Similarly, a number of membrane systems that are lower bounded by PSPACE retain their power under the new uniformity conditions.
    corecore