1,142 research outputs found

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    Beyond the Hype: On Using Blockchains in Trust Management for Authentication

    Full text link
    Trust Management (TM) systems for authentication are vital to the security of online interactions, which are ubiquitous in our everyday lives. Various systems, like the Web PKI (X.509) and PGP's Web of Trust are used to manage trust in this setting. In recent years, blockchain technology has been introduced as a panacea to our security problems, including that of authentication, without sufficient reasoning, as to its merits.In this work, we investigate the merits of using open distributed ledgers (ODLs), such as the one implemented by blockchain technology, for securing TM systems for authentication. We formally model such systems, and explore how blockchain can help mitigate attacks against them. After formal argumentation, we conclude that in the context of Trust Management for authentication, blockchain technology, and ODLs in general, can offer considerable advantages compared to previous approaches. Our analysis is, to the best of our knowledge, the first to formally model and argue about the security of TM systems for authentication, based on blockchain technology. To achieve this result, we first provide an abstract model for TM systems for authentication. Then, we show how this model can be conceptually encoded in a blockchain, by expressing it as a series of state transitions. As a next step, we examine five prevalent attacks on TM systems, and provide evidence that blockchain-based solutions can be beneficial to the security of such systems, by mitigating, or completely negating such attacks.Comment: A version of this paper was published in IEEE Trustcom. http://ieeexplore.ieee.org/document/8029486

    Self-sovereign identity decentralized identifiers, claims and credentials using non decentralized ledger technology

    Get PDF
    Dissertação de mestrado integrado em Engenharia InformáticaCurrent identity management systems rely on centralized databases to store user’s personal data, which poses a great risks for data security, as these infrastructure create a critical point of failure for the whole system. Beside that service providers have to bear huge maintenance costs and comply with strict data protection regulations. Self-sovereign identity (SSI) is a new identity management paradigm that tries to answer some of these problems by providing a decentralized user-centric identity management system that gives users full control of their personal data. Some of its underlying concepts include Decentralized Identifiers (DIDs), Verifiable Claims and Credentials. This approach does not rely on any central authority to enforce trust as it often uses Blockchain or other Decentralized Ledger Technologies (DLT) as the trust anchor of the system, although other decentralized network or databases could also be used for the same purpose. This thesis focuses on finding alternative solutions to DLT, in the context of SSI. Despite being the most used solution some DLTs are known to lack scalability and performance, and since a global identity management system heavily relies on these two requirements it might not be the best solution to the problem. This document provides an overview of the state of the art and main standards of SSI, and then focuses on a non-DLT approach to SSI, referencing non-DLT implementations and alternative decentralized infrastructures that can be used to replace DLTs in SSI. It highlights some of the limitations associated with using DLTs for identity management and presents a SSI framework based on decentralized names systems and networks. This framework couples all the main functionalities needed to create different SSI agents, which were showcased in a proof of concept application.Actualmente os sistemas de gestão de identidade digital estão dependentes de bases de dados centralizadas para o armazenamento de dados pessoais dos seus utilizadores. Isto representa um elevado risco de segurança, uma vez que estas infra-estruturas representam um ponto crítico de falha para todo o sistema. Para além disso os service providers têm que suportam elevados custos de manutenção para armazenar toda esta informaçao e ainda são obrigados a cumprir as normas de protecção de dados existentes. Self-sovereign identity (SSI) é um novo paradigma de identidade digital que tenta dar resposta a alguns destes problemas, criando um sistema focado no utilizador e totalmente descentralizado que oferece aos utilizadores total controlo sobre os seus dados pessoais. Alguns dos conceitos subjacentes incluem Decentalized Identifiers (DIDs), Verifiable Credentials e Presentations. Esta abordagem não depende de qualquer autoridade central para estabelecer confiança, dado que utiliza Blockchains ou outras Decentralized Ledger Technilogies (DLT) como âncora de confiança do sistema. No entanto outras redes ou bases de dados descentralizadas podem também ser utilizadas para alcançar o mesmo objectivo. Esta tese concentra-se em encontrar soluções alternativas para a DLT no âmbito da SSI. Apesar de esta ser a solução mais utilizada, sabe-se que algumas DLTs carecem de escalabilidade e desempenho. Sendo que um sistema de identidade digital com abrangência global dependerá bastante destes dois requisitos, esta pode não ser a melhor solução. Este documento fornece uma visão geral do estado da arte e principais standards da SSI, focando-se de seguida numa abordagem não DLT, que inclui uma breve referência a implementações não-DLT e tecnologias alternativas que poderão ser utilizadas para substituir as DLTs na SSI. Alem disso aborda algumas das principais limitações associadas ao uso de DLTs na gestão de identidades digitais e apresenta uma framework baseada em name systems e redes descentralizadas. Esta framework inclui as principais funcionalidades necessárias para implementar os diferentes agentes SSI, que foram demonstradas através de algumas aplicações proof of concept

    ZKlaims: Privacy-preserving Attribute-based Credentials using Non-interactive Zero-knowledge Techniques

    Full text link
    In this paper we present ZKlaims: a system that allows users to present attribute-based credentials in a privacy-preserving way. We achieve a zero-knowledge property on the basis of Succinct Non-interactive Arguments of Knowledge (SNARKs). ZKlaims allow users to prove statements on credentials issued by trusted third parties. The credential contents are never revealed to the verifier as part of the proving process. Further, ZKlaims can be presented non-interactively, mitigating the need for interactive proofs between the user and the verifier. This allows ZKlaims to be exchanged via fully decentralized services and storages such as traditional peer-to-peer networks based on distributed hash tables (DHTs) or even blockchains. To show this, we include a performance evaluation of ZKlaims and show how it can be integrated in decentralized identity provider services.Comment: 8 pages, published at SECRYPT 201

    reclaimID: Secure, Self-Sovereign Identities using Name Systems and Attribute-Based Encryption

    Full text link
    In this paper we present reclaimID: An architecture that allows users to reclaim their digital identities by securely sharing identity attributes without the need for a centralised service provider. We propose a design where user attributes are stored in and shared over a name system under user-owned namespaces. Attributes are encrypted using attribute-based encryption (ABE), allowing the user to selectively authorize and revoke access of requesting parties to subsets of his attributes. We present an implementation based on the decentralised GNU Name System (GNS) in combination with ciphertext-policy ABE using type-1 pairings. To show the practicality of our implementation, we carried out experimental evaluations of selected implementation aspects including attribute resolution performance. Finally, we show that our design can be used as a standard OpenID Connect Identity Provider allowing our implementation to be integrated into standard-compliant services.Comment: 12 page

    Peer-to-Peer System Design Trade-Offs: A Framework Exploring the Balance between Blockchain and IPFS

    Get PDF
    The current state of the Web, which is dominated by centralized cloud services, raises several concerns on different aspects such as governance, privacy, surveillance, and security. A way to address these issues is to decentralize the platforms by adopting new distributed technologies, such as IPFS and Blockchain, which follow a full peer-to-peer model. This work proposes a set of guidelines to design decentralized systems, taking into consideration the different trade-offs these technologies face with regard to their consistency requirements. These guidelines are then illustrated with the design of a decentralized questions and answers system. This system serves to illustrate a framework to create decentralized services and applications, that uses IPFS and Blockchain technologies and incorporates the discussion and guidelines of the paper, providing solutions for data access, data provenance and data discovery. Thus, this work proposes a framework for the design of decentralized systems and contributes a set of guidelines to decide in which cases Blockchain technology may be required, or when other technologies, such as IPFS, are sufficient
    • …
    corecore