1,105 research outputs found

    Attribute-Aware Attention Model for Fine-grained Representation Learning

    Full text link
    How to learn a discriminative fine-grained representation is a key point in many computer vision applications, such as person re-identification, fine-grained classification, fine-grained image retrieval, etc. Most of the previous methods focus on learning metrics or ensemble to derive better global representation, which are usually lack of local information. Based on the considerations above, we propose a novel Attribute-Aware Attention Model (A3MA^3M), which can learn local attribute representation and global category representation simultaneously in an end-to-end manner. The proposed model contains two attention models: attribute-guided attention module uses attribute information to help select category features in different regions, at the same time, category-guided attention module selects local features of different attributes with the help of category cues. Through this attribute-category reciprocal process, local and global features benefit from each other. Finally, the resulting feature contains more intrinsic information for image recognition instead of the noisy and irrelevant features. Extensive experiments conducted on Market-1501, CompCars, CUB-200-2011 and CARS196 demonstrate the effectiveness of our A3MA^3M. Code is available at https://github.com/iamhankai/attribute-aware-attention.Comment: Accepted by ACM Multimedia 2018 (Oral). Code is available at https://github.com/iamhankai/attribute-aware-attentio

    Drosophila-Inspired 3D Moving Object Detection Based on Point Clouds

    Full text link
    3D moving object detection is one of the most critical tasks in dynamic scene analysis. In this paper, we propose a novel Drosophila-inspired 3D moving object detection method using Lidar sensors. According to the theory of elementary motion detector, we have developed a motion detector based on the shallow visual neural pathway of Drosophila. This detector is sensitive to the movement of objects and can well suppress background noise. Designing neural circuits with different connection modes, the approach searches for motion areas in a coarse-to-fine fashion and extracts point clouds of each motion area to form moving object proposals. An improved 3D object detection network is then used to estimate the point clouds of each proposal and efficiently generates the 3D bounding boxes and the object categories. We evaluate the proposed approach on the widely-used KITTI benchmark, and state-of-the-art performance was obtained by using the proposed approach on the task of motion detection

    3D Pose Estimation for Fine-Grained Object Categories

    Full text link
    Existing object pose estimation datasets are related to generic object types and there is so far no dataset for fine-grained object categories. In this work, we introduce a new large dataset to benchmark pose estimation for fine-grained objects, thanks to the availability of both 2D and 3D fine-grained data recently. Specifically, we augment two popular fine-grained recognition datasets (StanfordCars and CompCars) by finding a fine-grained 3D CAD model for each sub-category and manually annotating each object in images with 3D pose. We show that, with enough training data, a full perspective model with continuous parameters can be estimated using 2D appearance information alone. We achieve this via a framework based on Faster/Mask R-CNN. This goes beyond previous works on category-level pose estimation, which only estimate discrete/continuous viewpoint angles or recover rotation matrices often with the help of key points. Furthermore, with fine-grained 3D models available, we incorporate a dense 3D representation named as location field into the CNN-based pose estimation framework to further improve the performance. The new dataset is available at www.umiacs.umd.edu/~wym/3dpose.htmlComment: 4th International Workshop on Recovering 6D Object Pose (ECCVW 2018). arXiv admin note: text overlap with arXiv:1810.0926

    Unsupervised Feature Learning Toward a Real-time Vehicle Make and Model Recognition

    Full text link
    Vehicle Make and Model Recognition (MMR) systems provide a fully automatic framework to recognize and classify different vehicle models. Several approaches have been proposed to address this challenge, however they can perform in restricted conditions. Here, we formulate the vehicle make and model recognition as a fine-grained classification problem and propose a new configurable on-road vehicle make and model recognition framework. We benefit from the unsupervised feature learning methods and in more details we employ Locality constraint Linear Coding (LLC) method as a fast feature encoder for encoding the input SIFT features. The proposed method can perform in real environments of different conditions. This framework can recognize fifty models of vehicles and has an advantage to classify every other vehicle not belonging to one of the specified fifty classes as an unknown vehicle. The proposed MMR framework can be configured to become faster or more accurate based on the application domain. The proposed approach is examined on two datasets including Iranian on-road vehicle dataset and CompuCar dataset. The Iranian on-road vehicle dataset contains images of 50 models of vehicles captured in real situations by traffic cameras in different weather and lighting conditions. Experimental results show superiority of the proposed framework over the state-of-the-art methods on Iranian on-road vehicle datatset and comparable results on CompuCar dataset with 97.5% and 98.4% accuracies, respectively.Comment: 15 pages include 14 figures and 5 table

    cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600 Papers Survey

    Full text link
    The paper gives futuristic challenges disscussed in the cvpaper.challenge. In 2015 and 2016, we thoroughly study 1,600+ papers in several conferences/journals such as CVPR/ICCV/ECCV/NIPS/PAMI/IJCV

    Cascaded Models for Better Fine-Grained Named Entity Recognition

    Full text link
    Named Entity Recognition (NER) is an essential precursor task for many natural language applications, such as relation extraction or event extraction. Much of the NER research has been done on datasets with few classes of entity types (e.g. PER, LOC, ORG, MISC), but many real world applications (disaster relief, complex event extraction, law enforcement) can benefit from a larger NER typeset. More recently, datasets were created that have hundreds to thousands of types of entities, sparking new lines of research (Sekine, 2008;Ling and Weld, 2012; Gillick et al., 2014; Choiet al., 2018). In this paper we present a cascaded approach to labeling fine-grained NER, applying to a newly released fine-grained NER dataset that was used in the TAC KBP 2019 evaluation (Ji et al., 2019), inspired by the fact that training data is available for some of the coarse labels. Using a combination of transformer networks, we show that performance can be improved by about 20 F1 absolute, as compared with the straightforward model built on the full fine-grained types, and show that, surprisingly, using course-labeled data in three languages leads to an improvement in the English data

    FAIR1M: A Benchmark Dataset for Fine-grained Object Recognition in High-Resolution Remote Sensing Imagery

    Full text link
    With the rapid development of deep learning, many deep learning-based approaches have made great achievements in object detection task. It is generally known that deep learning is a data-driven method. Data directly impact the performance of object detectors to some extent. Although existing datasets have included common objects in remote sensing images, they still have some limitations in terms of scale, categories, and images. Therefore, there is a strong requirement for establishing a large-scale benchmark on object detection in high-resolution remote sensing images. In this paper, we propose a novel benchmark dataset with more than 1 million instances and more than 15,000 images for Fine-grAined object recognItion in high-Resolution remote sensing imagery which is named as FAIR1M. All objects in the FAIR1M dataset are annotated with respect to 5 categories and 37 sub-categories by oriented bounding boxes. Compared with existing detection datasets dedicated to object detection, the FAIR1M dataset has 4 particular characteristics: (1) it is much larger than other existing object detection datasets both in terms of the quantity of instances and the quantity of images, (2) it provides more rich fine-grained category information for objects in remote sensing images, (3) it contains geographic information such as latitude, longitude and resolution, (4) it provides better image quality owing to a careful data cleaning procedure. To establish a baseline for fine-grained object recognition, we propose a novel evaluation method and benchmark fine-grained object detection tasks and a visual classification task using several State-Of-The-Art (SOTA) deep learning-based models on our FAIR1M dataset. Experimental results strongly indicate that the FAIR1M dataset is closer to practical application and it is considerably more challenging than existing datasets.Comment: 19 pages, 13 figure

    City-Scale Road Audit System using Deep Learning

    Full text link
    Road networks in cities are massive and is a critical component of mobility. Fast response to defects, that can occur not only due to regular wear and tear but also because of extreme events like storms, is essential. Hence there is a need for an automated system that is quick, scalable and cost-effective for gathering information about defects. We propose a system for city-scale road audit, using some of the most recent developments in deep learning and semantic segmentation. For building and benchmarking the system, we curated a dataset which has annotations required for road defects. However, many of the labels required for road audit have high ambiguity which we overcome by proposing a label hierarchy. We also propose a multi-step deep learning model that segments the road, subdivide the road further into defects, tags the frame for each defect and finally localizes the defects on a map gathered using GPS. We analyze and evaluate the models on image tagging as well as segmentation at different levels of the label hierarchy.Comment: IROS'1

    AI Oriented Large-Scale Video Management for Smart City: Technologies, Standards and Beyond

    Full text link
    Deep learning has achieved substantial success in a series of tasks in computer vision. Intelligent video analysis, which can be broadly applied to video surveillance in various smart city applications, can also be driven by such powerful deep learning engines. To practically facilitate deep neural network models in the large-scale video analysis, there are still unprecedented challenges for the large-scale video data management. Deep feature coding, instead of video coding, provides a practical solution for handling the large-scale video surveillance data. To enable interoperability in the context of deep feature coding, standardization is urgent and important. However, due to the explosion of deep learning algorithms and the particularity of feature coding, there are numerous remaining problems in the standardization process. This paper envisions the future deep feature coding standard for the AI oriented large-scale video management, and discusses existing techniques, standards and possible solutions for these open problems.Comment: 8 pages, 8 figures, 5 table

    cvpaper.challenge in 2015 - A review of CVPR2015 and DeepSurvey

    Full text link
    The "cvpaper.challenge" is a group composed of members from AIST, Tokyo Denki Univ. (TDU), and Univ. of Tsukuba that aims to systematically summarize papers on computer vision, pattern recognition, and related fields. For this particular review, we focused on reading the ALL 602 conference papers presented at the CVPR2015, the premier annual computer vision event held in June 2015, in order to grasp the trends in the field. Further, we are proposing "DeepSurvey" as a mechanism embodying the entire process from the reading through all the papers, the generation of ideas, and to the writing of paper.Comment: Survey Pape
    corecore