604 research outputs found

    Spatial CUSUM for Signal Region Detection

    Get PDF
    Detecting weak clustered signal in spatial data is important but challenging in applications such as medical image and epidemiology. A more efficient detection algorithm can provide more precise early warning, and effectively reduce the decision risk and cost. To date, many methods have been developed to detect signals with spatial structures. However, most of the existing methods are either too conservative for weak signals or computationally too intensive. In this paper, we consider a novel method named Spatial CUSUM (SCUSUM), which employs the idea of the CUSUM procedure and false discovery rate controlling. We develop theoretical properties of the method which indicates that asymptotically SCUSUM can reach high classification accuracy. In the simulation study, we demonstrate that SCUSUM is sensitive to weak spatial signals. This new method is applied to a real fMRI dataset as illustration, and more irregular weak spatial signals are detected in the images compared to some existing methods, including the conventional FDR, FDRL_L and scan statistics

    A Log-Linear Non-Parametric Online Changepoint Detection Algorithm based on Functional Pruning

    Full text link
    Online changepoint detection aims to detect anomalies and changes in real-time in high-frequency data streams, sometimes with limited available computational resources. This is an important task that is rooted in many real-world applications, including and not limited to cybersecurity, medicine and astrophysics. While fast and efficient online algorithms have been recently introduced, these rely on parametric assumptions which are often violated in practical applications. Motivated by data streams from the telecommunications sector, we build a flexible nonparametric approach to detect a change in the distribution of a sequence. Our procedure, NP-FOCuS, builds a sequential likelihood ratio test for a change in a set of points of the empirical cumulative density function of our data. This is achieved by keeping track of the number of observations above or below those points. Thanks to functional pruning ideas, NP-FOCuS has a computational cost that is log-linear in the number of observations and is suitable for high-frequency data streams. In terms of detection power, NP-FOCuS is seen to outperform current nonparametric online changepoint techniques in a variety of settings. We demonstrate the utility of the procedure on both simulated and real data

    Sequential Kalman filter for fast online changepoint detection in longitudinal health records

    Full text link
    This article introduces the sequential Kalman filter, a computationally scalable approach for online changepoint detection with temporally correlated data. The temporal correlation was not considered in the Bayesian online changepoint detection approach due to the large computational cost. Motivated by detecting COVID-19 infections for dialysis patients from massive longitudinal health records with a large number of covariates, we develop a scalable approach to detect multiple changepoints from correlated data by sequentially stitching Kalman filters of subsequences to compute the joint distribution of the observations, which has linear computational complexity with respect to the number of observations between the last detected changepoint and the current observation at each time point, without approximating the likelihood function. Compared to other online changepoint detection methods, simulated experiments show that our approach is more precise in detecting single or multiple changes in mean, variance, or correlation for temporally correlated data. Furthermore, we propose a new way to integrate classification and changepoint detection approaches that improve the detection delay and accuracy for detecting COVID-19 infection compared to other alternatives
    • …
    corecore