3,931 research outputs found

    DeepFM: A Factorization-Machine based Neural Network for CTR Prediction

    Full text link
    Learning sophisticated feature interactions behind user behaviors is critical in maximizing CTR for recommender systems. Despite great progress, existing methods seem to have a strong bias towards low- or high-order interactions, or require expertise feature engineering. In this paper, we show that it is possible to derive an end-to-end learning model that emphasizes both low- and high-order feature interactions. The proposed model, DeepFM, combines the power of factorization machines for recommendation and deep learning for feature learning in a new neural network architecture. Compared to the latest Wide \& Deep model from Google, DeepFM has a shared input to its "wide" and "deep" parts, with no need of feature engineering besides raw features. Comprehensive experiments are conducted to demonstrate the effectiveness and efficiency of DeepFM over the existing models for CTR prediction, on both benchmark data and commercial data

    An Ensemble-based Approach to Click-Through Rate Prediction for Promoted Listings at Etsy

    Full text link
    Etsy is a global marketplace where people across the world connect to make, buy and sell unique goods. Sellers at Etsy can promote their product listings via advertising campaigns similar to traditional sponsored search ads. Click-Through Rate (CTR) prediction is an integral part of online search advertising systems where it is utilized as an input to auctions which determine the final ranking of promoted listings to a particular user for each query. In this paper, we provide a holistic view of Etsy's promoted listings' CTR prediction system and propose an ensemble learning approach which is based on historical or behavioral signals for older listings as well as content-based features for new listings. We obtain representations from texts and images by utilizing state-of-the-art deep learning techniques and employ multimodal learning to combine these different signals. We compare the system to non-trivial baselines on a large-scale real world dataset from Etsy, demonstrating the effectiveness of the model and strong correlations between offline experiments and online performance. The paper is also the first technical overview to this kind of product in e-commerce context

    Deep Character-Level Click-Through Rate Prediction for Sponsored Search

    Full text link
    Predicting the click-through rate of an advertisement is a critical component of online advertising platforms. In sponsored search, the click-through rate estimates the probability that a displayed advertisement is clicked by a user after she submits a query to the search engine. Commercial search engines typically rely on machine learning models trained with a large number of features to make such predictions. This is inevitably requires a lot of engineering efforts to define, compute, and select the appropriate features. In this paper, we propose two novel approaches (one working at character level and the other working at word level) that use deep convolutional neural networks to predict the click-through rate of a query-advertisement pair. Specially, the proposed architectures only consider the textual content appearing in a query-advertisement pair as input, and produce as output a click-through rate prediction. By comparing the character-level model with the word-level model, we show that language representation can be learnt from scratch at character level when trained on enough data. Through extensive experiments using billions of query-advertisement pairs of a popular commercial search engine, we demonstrate that both approaches significantly outperform a baseline model built on well-selected text features and a state-of-the-art word2vec-based approach. Finally, by combining the predictions of the deep models introduced in this study with the prediction of the model in production of the same commercial search engine, we significantly improve the accuracy and the calibration of the click-through rate prediction of the production system.Comment: SIGIR2017, 10 page
    • …
    corecore