476 research outputs found

    The shattering dimension of sets of linear functionals

    Full text link
    We evaluate the shattering dimension of various classes of linear functionals on various symmetric convex sets. The proofs here relay mostly on methods from the local theory of normed spaces and include volume estimates, factorization techniques and tail estimates of norms, viewed as random variables on Euclidean spheres. The estimates of shattering dimensions can be applied to obtain error bounds for certain classes of functions, a fact which was the original motivation of this study. Although this can probably be done in a more traditional manner, we also use the approach presented here to determine whether several classes of linear functionals satisfy the uniform law of large numbers and the uniform central limit theorem.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Probability (http://www.imstat.org/aop/) at http://dx.doi.org/10.1214/00911790400000038

    Testing probability distributions underlying aggregated data

    Full text link
    In this paper, we analyze and study a hybrid model for testing and learning probability distributions. Here, in addition to samples, the testing algorithm is provided with one of two different types of oracles to the unknown distribution DD over [n][n]. More precisely, we define both the dual and cumulative dual access models, in which the algorithm AA can both sample from DD and respectively, for any i∈[n]i\in[n], - query the probability mass D(i)D(i) (query access); or - get the total mass of {1,…,i}\{1,\dots,i\}, i.e. ∑j=1iD(j)\sum_{j=1}^i D(j) (cumulative access) These two models, by generalizing the previously studied sampling and query oracle models, allow us to bypass the strong lower bounds established for a number of problems in these settings, while capturing several interesting aspects of these problems -- and providing new insight on the limitations of the models. Finally, we show that while the testing algorithms can be in most cases strictly more efficient, some tasks remain hard even with this additional power

    A Donsker Theorem for Lévy Measures

    Get PDF
    Given n equidistant realisations of a Lévy process (Lt; t >= 0), a natural estimator for the distribution function N of the Lévy measure is constructed. Under a polynomial decay restriction on the characteristic function, a Donsker-type theorem is proved, that is, a functional central limit theorem for the process in the space of bounded functions away from zero. The limit distribution is a generalised Brownian bridge process with bounded and continuous sample paths whose covariance structure depends on the Fourier-integral operator. The class of Lévy processes covered includes several relevant examples such as compound Poisson, Gamma and self-decomposable processes. Main ideas in the proof include establishing pseudo-locality of the Fourier-integral operator and recent techniques from smoothed empirical processes.uniform central limit theorem, nonlinear inverse problem, smoothed empirical processes, pseudo-differential operators, jump measure

    A Size-Free CLT for Poisson Multinomials and its Applications

    Full text link
    An (n,k)(n,k)-Poisson Multinomial Distribution (PMD) is the distribution of the sum of nn independent random vectors supported on the set Bk={e1,…,ek}{\cal B}_k=\{e_1,\ldots,e_k\} of standard basis vectors in Rk\mathbb{R}^k. We show that any (n,k)(n,k)-PMD is poly(kσ){\rm poly}\left({k\over \sigma}\right)-close in total variation distance to the (appropriately discretized) multi-dimensional Gaussian with the same first two moments, removing the dependence on nn from the Central Limit Theorem of Valiant and Valiant. Interestingly, our CLT is obtained by bootstrapping the Valiant-Valiant CLT itself through the structural characterization of PMDs shown in recent work by Daskalakis, Kamath, and Tzamos. In turn, our stronger CLT can be leveraged to obtain an efficient PTAS for approximate Nash equilibria in anonymous games, significantly improving the state of the art, and matching qualitatively the running time dependence on nn and 1/ε1/\varepsilon of the best known algorithm for two-strategy anonymous games. Our new CLT also enables the construction of covers for the set of (n,k)(n,k)-PMDs, which are proper and whose size is shown to be essentially optimal. Our cover construction combines our CLT with the Shapley-Folkman theorem and recent sparsification results for Laplacian matrices by Batson, Spielman, and Srivastava. Our cover size lower bound is based on an algebraic geometric construction. Finally, leveraging the structural properties of the Fourier spectrum of PMDs we show that these distributions can be learned from Ok(1/ε2)O_k(1/\varepsilon^2) samples in polyk(1/ε){\rm poly}_k(1/\varepsilon)-time, removing the quasi-polynomial dependence of the running time on 1/ε1/\varepsilon from the algorithm of Daskalakis, Kamath, and Tzamos.Comment: To appear in STOC 201
    • …
    corecore