3,329 research outputs found

    Hierarchy-based Image Embeddings for Semantic Image Retrieval

    Full text link
    Deep neural networks trained for classification have been found to learn powerful image representations, which are also often used for other tasks such as comparing images w.r.t. their visual similarity. However, visual similarity does not imply semantic similarity. In order to learn semantically discriminative features, we propose to map images onto class embeddings whose pair-wise dot products correspond to a measure of semantic similarity between classes. Such an embedding does not only improve image retrieval results, but could also facilitate integrating semantics for other tasks, e.g., novelty detection or few-shot learning. We introduce a deterministic algorithm for computing the class centroids directly based on prior world-knowledge encoded in a hierarchy of classes such as WordNet. Experiments on CIFAR-100, NABirds, and ImageNet show that our learned semantic image embeddings improve the semantic consistency of image retrieval results by a large margin.Comment: Accepted at WACV 2019. Source code: https://github.com/cvjena/semantic-embedding

    Adversarial nets with perceptual losses for text-to-image synthesis

    Full text link
    Recent approaches in generative adversarial networks (GANs) can automatically synthesize realistic images from descriptive text. Despite the overall fair quality, the generated images often expose visible flaws that lack structural definition for an object of interest. In this paper, we aim to extend state of the art for GAN-based text-to-image synthesis by improving perceptual quality of generated images. Differentiated from previous work, our synthetic image generator optimizes on perceptual loss functions that measure pixel, feature activation, and texture differences against a natural image. We present visually more compelling synthetic images of birds and flowers generated from text descriptions in comparison to some of the most prominent existing work

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    Full text link
    Existing deep convolutional neural networks (CNNs) require a fixed-size (e.g., 224x224) input image. This requirement is "artificial" and may reduce the recognition accuracy for the images or sub-images of an arbitrary size/scale. In this work, we equip the networks with another pooling strategy, "spatial pyramid pooling", to eliminate the above requirement. The new network structure, called SPP-net, can generate a fixed-length representation regardless of image size/scale. Pyramid pooling is also robust to object deformations. With these advantages, SPP-net should in general improve all CNN-based image classification methods. On the ImageNet 2012 dataset, we demonstrate that SPP-net boosts the accuracy of a variety of CNN architectures despite their different designs. On the Pascal VOC 2007 and Caltech101 datasets, SPP-net achieves state-of-the-art classification results using a single full-image representation and no fine-tuning. The power of SPP-net is also significant in object detection. Using SPP-net, we compute the feature maps from the entire image only once, and then pool features in arbitrary regions (sub-images) to generate fixed-length representations for training the detectors. This method avoids repeatedly computing the convolutional features. In processing test images, our method is 24-102x faster than the R-CNN method, while achieving better or comparable accuracy on Pascal VOC 2007. In ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014, our methods rank #2 in object detection and #3 in image classification among all 38 teams. This manuscript also introduces the improvement made for this competition.Comment: This manuscript is the accepted version for IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2015. See Changelo

    ImageNet Large Scale Visual Recognition Challenge

    Get PDF
    The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the five years of the challenge, and propose future directions and improvements.Comment: 43 pages, 16 figures. v3 includes additional comparisons with PASCAL VOC (per-category comparisons in Table 3, distribution of localization difficulty in Fig 16), a list of queries used for obtaining object detection images (Appendix C), and some additional reference

    The FOLE Table

    Full text link
    This paper continues the discussion of the representation of ontologies in the first-order logical environment FOLE. According to Gruber, an ontology defines the primitives with which to model the knowledge resources for a community of discourse. These primitives, consisting of classes, relationships and properties, are represented by the entity-relationship-attribute ERA data model of Chen. An ontology uses formal axioms to constrain the interpretation of these primitives. In short, an ontology specifies a logical theory. A series of three papers by the author provide a rigorous mathematical representation for the ERA data model in particular, and ontologies in general, within FOLE. The first two papers, which provide a foundation and superstructure for FOLE, represent the formalism and semantics of (many-sorted) first-order logic in a classification form corresponding to ideas discussed in the Information Flow Framework (IFF). The third paper will define an interpretation of FOLE in terms of the transformational passage, first described in (Kent, 2013), from the classification form of first-order logic to an equivalent interpretation form, thereby defining the formalism and semantics of first-order logical/relational database systems. Two papers will provide a precise mathematical basis for FOLE interpretation: the current paper develops the notion of a FOLE relational table following the relational model of Codd, and a follow-up paper will develop the notion of a FOLE relational database. Both of these papers expand on material found in the paper (Kent, 2011). Although the classification form follows the entity-relationship-attribute data model of Chen, the interpretation form follows the relational data model of Codd. In general, the FOLE representation uses a conceptual structures approach, that is completely compatible with formal concept analysis and information flow.Comment: 48 pages, 21 figures, 9 tables, submitted to T.A.C. for review in August 201
    • …
    corecore