3 research outputs found

    LNCS

    Get PDF
    Reachability analysis is difficult for hybrid automata with affine differential equations, because the reach set needs to be approximated. Promising abstraction techniques usually employ interval methods or template polyhedra. Interval methods account for dense time and guarantee soundness, and there are interval-based tools that overapproximate affine flowpipes. But interval methods impose bounded and rigid shapes, which make refinement expensive and fixpoint detection difficult. Template polyhedra, on the other hand, can be adapted flexibly and can be unbounded, but sound template refinement for unbounded reachability analysis has been implemented only for systems with piecewise constant dynamics. We capitalize on the advantages of both techniques, combining interval arithmetic and template polyhedra, using the former to abstract time and the latter to abstract space. During a CEGAR loop, whenever a spurious error trajectory is found, we compute additional space constraints and split time intervals, and use these space-time interpolants to eliminate the counterexample. Space-time interpolation offers a lazy, flexible framework for increasing precision while guaranteeing soundness, both for error avoidance and fixpoint detection. To the best of out knowledge, this is the first abstraction refinement scheme for the reachability analysis over unbounded and dense time of affine hybrid systems, which is both sound and automatic. We demonstrate the effectiveness of our algorithm with several benchmark examples, which cannot be handled by other tools

    Preventing Capability Abuse through Systematic Analysis of Exposed Interface

    Full text link
    Connectivity and interoperability are becoming more and more critical in today’s software and cyber-physical systems. Different components of the system can better collaborate, enabling new innovation opportunities. However, to support connectivity and interoperability, systems and applications have to expose certain capabilities, which inevitably expands their attack surfaces and increases the risk of being abused. Due to the complexity of software systems and the heterogeneity of cyber-physical systems, it is challenging to secure their exposed interfaces and completely prevent abuses. To address the problems in a proactive manner, in this dissertation, we demonstrate that systematic studies of exposed interfaces and their usage in the real world, leveraging techniques such as program analysis, can reveal design-level, implementation-level, as well as configuration-level security issues, which can help with the development of defense solutions that effectively prevent capability abuse. This dissertation solves four problems in this space. First, we detect inconsistent security policy enforcement, a common implementation flaw. Focusing on the Android framework, we design and build a tool that compares permissions enforced on different code paths and identifies the paths enforcing weaker permissions. Second, we propose the Application Lifecycle Graph (ALG), a novel modeling approach to describing system-wide app lifecycle, to assist the detection of diehard behaviors that abuse lifecycle interfaces. We develop a lightweight runtime framework that utilizes ALG to realize fine-grained app lifecycle control. Third, we study real-world programmable logic controller programs for identifying insecure configurations that can be abused by adversaries to cause safety violations. Lastly, we conduct the first systematic security study on the usage of Unix domain sockets on Android, which reveals both implementation flaws and configuration weaknesses.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/149960/1/yurushao_1.pd
    corecore