102,060 research outputs found
ClovaCall: Korean Goal-Oriented Dialog Speech Corpus for Automatic Speech Recognition of Contact Centers
Automatic speech recognition (ASR) via call is essential for various
applications, including AI for contact center (AICC) services. Despite the
advancement of ASR, however, most publicly available call-based speech corpora
such as Switchboard are old-fashioned. Also, most existing call corpora are in
English and mainly focus on open domain dialog or general scenarios such as
audiobooks. Here we introduce a new large-scale Korean call-based speech corpus
under a goal-oriented dialog scenario from more than 11,000 people, i.e.,
ClovaCall corpus. ClovaCall includes approximately 60,000 pairs of a short
sentence and its corresponding spoken utterance in a restaurant reservation
domain. We validate the effectiveness of our dataset with intensive experiments
using two standard ASR models. Furthermore, we release our ClovaCall dataset
and baseline source codes to be available via
https://github.com/ClovaAI/ClovaCall.Comment: 5 pages, 2 figures, 4 tables, The first two authors equally
contributed to this wor
Evaluating Competing Agent Strategies for a Voice Email Agent
This paper reports experimental results comparing a mixed-initiative to a
system-initiative dialog strategy in the context of a personal voice email
agent. To independently test the effects of dialog strategy and user expertise,
users interact with either the system-initiative or the mixed-initiative agent
to perform three successive tasks which are identical for both agents. We
report performance comparisons across agent strategies as well as over tasks.
This evaluation utilizes and tests the PARADISE evaluation framework, and
discusses the performance function derivable from the experimental data.Comment: 6 pages latex, uses icassp91.sty, psfi
An improved multi-agent simulation methodology for modelling and evaluating wireless communication systems resource allocation algorithms
Multi-Agent Systems (MAS) constitute a well known approach in modelling dynamical real world systems. Recently, this technology has been applied to Wireless Communication Systems (WCS), where efficient resource allocation is a primary goal, for modelling the physical entities involved, like Base Stations (BS), service providers and network operators. This paper presents a novel approach in applying MAS methodology to WCS resource allocation by modelling more abstract entities involved in WCS operation, and especially the concurrent network procedures (services). Due to the concurrent nature of a WCS, MAS technology presents a suitable modelling solution. Services such as new call admission, handoff, user movement and call termination are independent to one another and may occur at the same time for many different users in the network. Thus, the required network procedures for supporting the above services act autonomously, interact with the network environment (gather information such as interference conditions), take decisions (e.g. call establishment), etc, and can be modelled as agents. Based on this novel simulation approach, the agent cooperation in terms of negotiation and agreement becomes a critical issue. To this end, two negotiation strategies are presented and evaluated in this research effort and among them the distributed negotiation and communication scheme between network agents is presented to be highly efficient in terms of network performance. The multi-agent concept adapted to the concurrent nature of large scale WCS is, also, discussed in this paper
Learning End-to-End Goal-Oriented Dialog with Multiple Answers
In a dialog, there can be multiple valid next utterances at any point. The
present end-to-end neural methods for dialog do not take this into account.
They learn with the assumption that at any time there is only one correct next
utterance. In this work, we focus on this problem in the goal-oriented dialog
setting where there are different paths to reach a goal. We propose a new
method, that uses a combination of supervised learning and reinforcement
learning approaches to address this issue. We also propose a new and more
effective testbed, permuted-bAbI dialog tasks, by introducing multiple valid
next utterances to the original-bAbI dialog tasks, which allows evaluation of
goal-oriented dialog systems in a more realistic setting. We show that there is
a significant drop in performance of existing end-to-end neural methods from
81.5% per-dialog accuracy on original-bAbI dialog tasks to 30.3% on
permuted-bAbI dialog tasks. We also show that our proposed method improves the
performance and achieves 47.3% per-dialog accuracy on permuted-bAbI dialog
tasks.Comment: EMNLP 2018. permuted-bAbI dialog tasks are available at -
https://github.com/IBM/permuted-bAbI-dialog-task
Contextual Out-of-Domain Utterance Handling With Counterfeit Data Augmentation
Neural dialog models often lack robustness to anomalous user input and
produce inappropriate responses which leads to frustrating user experience.
Although there are a set of prior approaches to out-of-domain (OOD) utterance
detection, they share a few restrictions: they rely on OOD data or multiple
sub-domains, and their OOD detection is context-independent which leads to
suboptimal performance in a dialog. The goal of this paper is to propose a
novel OOD detection method that does not require OOD data by utilizing
counterfeit OOD turns in the context of a dialog. For the sake of fostering
further research, we also release new dialog datasets which are 3 publicly
available dialog corpora augmented with OOD turns in a controllable way. Our
method outperforms state-of-the-art dialog models equipped with a conventional
OOD detection mechanism by a large margin in the presence of OOD utterances.Comment: ICASSP 201
- …
