3,437 research outputs found

    Learning implicit recommenders from massive unobserved feedback

    Get PDF
    In this thesis we investigate implicit feedback techniques for real-world recommender systems. However, learning a recommender system from implicit feedback is very challenging, primarily due to the lack of negative feedback. While a common strategy is to treat the unobserved feedback (i.e., missing data) as a source of negative signal, the technical difficulties cannot be overlooked: (1) the ratio of positive to negative feedback in practice is highly imbalanced, and (2) learning through all unobserved feedback (which easily scales to billion level or higher) is computationally expensive. To effectively and efficiently learn recommender models from implicit feedback, two types of methods are presented, that is, negative sampling based stochastic gradient descent (NS-SGD) and whole sample based batch gradient descent (WS-BGD). Regarding the NS-SGD method, how to effectively sample informative negative examples to improve recommendation algorithms is investigated. More specifically, three learning models called Lambda Factorization Machines (lambdaFM), Boosting Factorization Machines (BoostFM) and Geographical Bayesian Personalized Ranking (GeoBPR) are described. While regarding the WS-BGD method, how to efficiently use all unobserved implicit feedback data rather than resorting to negative sampling is studied. A fast BGD learning algorithm is proposed, which can be applied to both basic collaborative filtering and content/context-aware recommendation settings. The last research work is on the session-based item recommendation, which is also an implicit feedback scenario. However, different from above four works based on shallow embedding models, we apply deep learning based sequence-to-sequence model to directly generate the probability distribution of next item. The proposed generative model can be applied to various sequential recommendation scenarios. To support the main arguments, extensive experiments are carried out based on real-world recommendation datasets. The proposed recommendation algorithms have achieved significant improvements in contrast with strong benchmark models. Moreover, these models can also serve as generic solutions and solid baselines for future implicit recommendation problems

    BoostFM: Boosted Factorization Machines for Top-N Feature-based Recommendation

    Get PDF
    Feature-based matrix factorization techniques such as Factorization Machines (FM) have been proven to achieve impressive accuracy for the rating prediction task. However, most common recommendation scenarios are formulated as a top-N item ranking problem with implicit feedback (e.g., clicks, purchases)rather than explicit ratings. To address this problem, with both implicit feedback and feature information, we propose a feature-based collaborative boosting recommender called BoostFM, which integrates boosting into factorization models during the process of item ranking. Specifically, BoostFM is an adaptive boosting framework that linearly combines multiple homogeneous component recommenders, which are repeatedly constructed on the basis of the individual FM model by a re-weighting scheme. Two ways are proposed to efficiently train the component recommenders from the perspectives of both pairwise and listwise Learning-to-Rank (L2R). The properties of our proposed method are empirically studied on three real-world datasets. The experimental results show that BoostFM outperforms a number of state-of-the-art approaches for top-N recommendation

    Algorithms and Architecture for Real-time Recommendations at News UK

    Full text link
    Recommendation systems are recognised as being hugely important in industry, and the area is now well understood. At News UK, there is a requirement to be able to quickly generate recommendations for users on news items as they are published. However, little has been published about systems that can generate recommendations in response to changes in recommendable items and user behaviour in a very short space of time. In this paper we describe a new algorithm for updating collaborative filtering models incrementally, and demonstrate its effectiveness on clickstream data from The Times. We also describe the architecture that allows recommendations to be generated on the fly, and how we have made each component scalable. The system is currently being used in production at News UK.Comment: Accepted for presentation at AI-2017 Thirty-seventh SGAI International Conference on Artificial Intelligence. Cambridge, England 12-14 December 201

    AutoSVD++: An Efficient Hybrid Collaborative Filtering Model via Contractive Auto-encoders

    Full text link
    Collaborative filtering (CF) has been successfully used to provide users with personalized products and services. However, dealing with the increasing sparseness of user-item matrix still remains a challenge. To tackle such issue, hybrid CF such as combining with content based filtering and leveraging side information of users and items has been extensively studied to enhance performance. However, most of these approaches depend on hand-crafted feature engineering, which are usually noise-prone and biased by different feature extraction and selection schemes. In this paper, we propose a new hybrid model by generalizing contractive auto-encoder paradigm into matrix factorization framework with good scalability and computational efficiency, which jointly model content information as representations of effectiveness and compactness, and leverage implicit user feedback to make accurate recommendations. Extensive experiments conducted over three large scale real datasets indicate the proposed approach outperforms the compared methods for item recommendation.Comment: 4 pages, 3 figure

    LambdaFM: Learning Optimal Ranking with Factorization Machines Using Lambda Surrogates

    Get PDF
    State-of-the-art item recommendation algorithms, which apply Factorization Machines (FM) as a scoring function and pairwise ranking loss as a trainer (PRFM for short), have been recently investigated for the implicit feedback based context-aware recommendation problem (IFCAR). However, good recommenders particularly emphasize on the accuracy near the top of the ranked list, and typical pairwise loss functions might not match well with such a requirement. In this paper, we demonstrate, both theoretically and empirically, PRFM models usually lead to non-optimal item recommendation results due to such a mismatch. Inspired by the success of LambdaRank, we introduce Lambda Factorization Machines (LambdaFM), which is particularly intended for optimizing ranking performance for IFCAR. We also point out that the original lambda function suffers from the issue of expensive computational complexity in such settings due to a large amount of unobserved feedback. Hence, instead of directly adopting the original lambda strategy, we create three effective lambda surrogates by conducting a theoretical analysis for lambda from the top-N optimization perspective. Further, we prove that the proposed lambda surrogates are generic and applicable to a large set of pairwise ranking loss functions. Experimental results demonstrate LambdaFM significantly outperforms state-of-the-art algorithms on three real-world datasets in terms of four standard ranking measures
    • …
    corecore