6,267 research outputs found

    Coordinated optimization of visual cortical maps : 2. Numerical studies

    Get PDF
    In the juvenile brain, the synaptic architecture of the visual cortex remains in a state of flux for months after the natural onset of vision and the initial emergence of feature selectivity in visual cortical neurons. It is an attractive hypothesis that visual cortical architecture is shaped during this extended period of juvenile plasticity by the coordinated optimization of multiple visual cortical maps such as orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we introduced a class of analytically tractable coordinated optimization models and solved representative examples, in which a spatially complex organization of the OP map is induced by interactions between the maps. We found that these solutions near symmetry breaking threshold predict a highly ordered map layout. Here we examine the time course of the convergence towards attractor states and optima of these models. In particular, we determine the timescales on which map optimization takes place and how these timescales can be compared to those of visual cortical development and plasticity. We also assess whether our models exhibit biologically more realistic, spatially irregular solutions at a finite distance from threshold, when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. We show that, although maps typically undergo substantial rearrangement, no other solutions than pinwheel crystals and stripes dominate in the emerging layouts. Pinwheel crystallization takes place on a rather short timescale and can also occur for detuned wavelengths of different maps. Our numerical results thus support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the architecture of the visual cortex. We discuss several alternative scenarios that may improve the agreement between model solutions and biological observations

    Coordinated optimization of visual cortical maps (II) Numerical studies

    Get PDF
    It is an attractive hypothesis that the spatial structure of visual cortical architecture can be explained by the coordinated optimization of multiple visual cortical maps representing orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we defined a class of analytically tractable coordinated optimization models and solved representative examples in which a spatially complex organization of the orientation preference map is induced by inter-map interactions. We found that attractor solutions near symmetry breaking threshold predict a highly ordered map layout and require a substantial OD bias for OP pinwheel stabilization. Here we examine in numerical simulations whether such models exhibit biologically more realistic spatially irregular solutions at a finite distance from threshold and when transients towards attractor states are considered. We also examine whether model behavior qualitatively changes when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. Our numerical results support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the spatially irregular architecture of the visual cortex. We discuss several alternative scenarios and additional factors that may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1102.335

    Neuroscience and syntax

    Get PDF

    Introduction: The Third International Conference on Epigenetic Robotics

    Get PDF
    This paper summarizes the paper and poster contributions to the Third International Workshop on Epigenetic Robotics. The focus of this workshop is on the cross-disciplinary interaction of developmental psychology and robotics. Namely, the general goal in this area is to create robotic models of the psychological development of various behaviors. The term "epigenetic" is used in much the same sense as the term "developmental" and while we could call our topic "developmental robotics", developmental robotics can be seen as having a broader interdisciplinary emphasis. Our focus in this workshop is on the interaction of developmental psychology and robotics and we use the phrase "epigenetic robotics" to capture this focus

    Representation and decision making in the immune system

    Get PDF
    The immune system has long been attributed cognitive capacities such as "recognition" of pathogenic agents; "memory" of previous infections; "regulation" of a cavalry of detector and effector cells; and "adaptation" to a changing environment and evolving threats. Ostensibly, in preventing disease the immune system must be capable of discriminating states of pathology in the organism; identifying causal agents or ``pathogens''; and correctly deploying lethal effector mechanisms. What is more, these behaviours must be learnt insomuch as the paternal genes cannot encode the pathogenic environment of the child. Insights into the mechanisms underlying these phenomena are of interest, not only to immunologists, but to computer scientists pushing the envelope of machine autonomy. This thesis approaches these phenomena from the perspective that immunological processes are inherently inferential processes. By considering the immune system as a statistical decision maker, we attempt to build a bridge between the traditionally distinct fields of biological modelling and statistical modelling. Through a mixture of novel theoretical and empirical analysis we assert the efficacy of competitive exclusion as a general principle that benefits both. For the immunologist, the statistical modelling perspective allows us to better determine that which is phenomenologically sufficient from the mass of observational data, providing quantitative insight that may offer relief from existing dichotomies. For the computer scientist, the biological modelling perspective results in a theoretically transparent and empirically effective numerical method that is able to finesse the trade-off between myopic greediness and intractability in domains such as sparse approximation, continuous learning and boosting weak heuristics. Together, we offer this as a modern reformulation of the interface between computer science and immunology, established in the seminal work of Perelson and collaborators, over 20 years ago.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    How to do things without words

    Get PDF
    Clark and Chalmers (1998) defend the hypothesis of an ‘Extended Mind’, maintaining that beliefs and other paradigmatic mental states can be implemented outside the central nervous system or body. Aspects of the problem of ‘language acquisition’ are considered in the light of the extended mind hypothesis. Rather than ‘language’ as typically understood, the object of study is something called ‘utterance-activity’, a term of art intended to refer to the full range of kinetic and prosodic features of the on-line behaviour of interacting humans. It is argued that utterance activity is plausibly regarded as jointly controlled by the embodied activity of interacting people, and that it contributes to the control of their behaviour. By means of specific examples it is suggested that this complex joint control facilitates easier learning of at least some features of language. This in turn suggests a striking form of the extended mind, in which infants’ cognitive powers are augmented by those of the people with whom they interact
    • …
    corecore