78 research outputs found

    Duality Regularization for Unsupervised Bilingual Lexicon Induction

    Full text link
    Unsupervised bilingual lexicon induction naturally exhibits duality, which results from symmetry in back-translation. For example, EN-IT and IT-EN induction can be mutually primal and dual problems. Current state-of-the-art methods, however, consider the two tasks independently. In this paper, we propose to train primal and dual models jointly, using regularizers to encourage consistency in back translation cycles. Experiments across 6 language pairs show that the proposed method significantly outperforms competitive baselines, obtaining the best-published results on a standard benchmark

    Do we really need fully unsupervised cross-lingual embeddings?

    Get PDF
    Recent efforts in cross-lingual word embedding (CLWE) learning have predominantly focused on fully unsupervised approaches that project monolingual embeddings into a shared cross-lingual space without any cross-lingual signal. The lack of any supervision makes such approaches conceptually attractive. Yet, their only core difference from (weakly) supervised projection-based CLWE methods is in the way they obtain a seed dictionary used to initialize an iterative self-learning procedure. The fully unsupervised methods have arguably become more robust, and their primary use case is CLWE induction for pairs of resource-poor and distant languages. In this paper, we question the ability of even the most robust unsupervised CLWE approaches to induce meaningful CLWEs in these more challenging settings. A series of bilingual lexicon induction (BLI) experiments with 15 diverse languages (210 language pairs) show that fully unsupervised CLWE methods still fail for a large number of language pairs (e.g., they yield zero BLI performance for 87/210 pairs). Even when they succeed, they never surpass the performance of weakly supervised methods (seeded with 500-1,000 translation pairs) using the same self-learning procedure in any BLI setup, and the gaps are often substantial. These findings call for revisiting the main motivations behind fully unsupervised CLWE methods

    Multi-lingual Common Semantic Space Construction via Cluster-consistent Word Embedding

    Full text link
    We construct a multilingual common semantic space based on distributional semantics, where words from multiple languages are projected into a shared space to enable knowledge and resource transfer across languages. Beyond word alignment, we introduce multiple cluster-level alignments and enforce the word clusters to be consistently distributed across multiple languages. We exploit three signals for clustering: (1) neighbor words in the monolingual word embedding space; (2) character-level information; and (3) linguistic properties (e.g., apposition, locative suffix) derived from linguistic structure knowledge bases available for thousands of languages. We introduce a new cluster-consistent correlational neural network to construct the common semantic space by aligning words as well as clusters. Intrinsic evaluation on monolingual and multilingual QVEC tasks shows our approach achieves significantly higher correlation with linguistic features than state-of-the-art multi-lingual embedding learning methods do. Using low-resource language name tagging as a case study for extrinsic evaluation, our approach achieves up to 24.5\% absolute F-score gain over the state of the art.Comment: 10 page
    corecore