298 research outputs found

    Walks confined in a quadrant are not always D-finite

    Get PDF
    We consider planar lattice walks that start from a prescribed position, take their steps in a given finite subset of Z^2, and always stay in the quadrant x >= 0, y >= 0. We first give a criterion which guarantees that the length generating function of these walks is D-finite, that is, satisfies a linear differential equation with polynomial coefficients. This criterion applies, among others, to the ordinary square lattice walks. Then, we prove that walks that start from (1,1), take their steps in {(2,-1), (-1,2)} and stay in the first quadrant have a non-D-finite generating function. Our proof relies on a functional equation satisfied by this generating function, and on elementary complex analysis.Comment: To appear in Theoret. Comput. Sci. (special issue devoted to random generation of combinatorial objects and bijective combinatorics

    The asymptotic determinant of the discrete Laplacian

    Full text link
    We compute the asymptotic determinant of the discrete Laplacian on a simply-connected rectilinear region in R^2. As an application of this result, we prove that the growth exponent of the loop-erased random walk in Z^2 is 5/4.Comment: 36 pages, 4 figures, to appear in Acta Mathematic

    Walks on the slit plane: other approaches

    Get PDF
    Let S be a finite subset of Z^2. A walk on the slit plane with steps in S is a sequence (0,0)=w_0, w_1, ..., w_n of points of Z^2 such that w_{i+1}-w_i belongs to S for all i, and none of the points w_i, i>0, lie on the half-line H= {(k,0): k =< 0}. In a recent paper, G. Schaeffer and the author computed the length generating function S(t) of walks on the slit plane for several sets S. All the generating functions thus obtained turned out to be algebraic: for instance, on the ordinary square lattice, S(t) =\frac{(1+\sqrt{1+4t})^{1/2}(1+\sqrt{1-4t})^{1/2}}{2(1-4t)^{3/4}}. The combinatorial reasons for this algebraicity remain obscure. In this paper, we present two new approaches for solving slit plane models. One of them simplifies and extends the functional equation approach of the original paper. The other one is inspired by an argument of Lawler; it is more combinatorial, and explains the algebraicity of the product of three series related to the model. It can also be seen as an extension of the classical cycle lemma. Both methods work for any set of steps S. We exhibit a large family of sets S for which the generating function of walks on the slit plane is algebraic, and another family for which it is neither algebraic, nor even D-finite. These examples give a hint at where the border between algebraicity and transcendence lies, and calls for a complete classification of the sets S.Comment: 31 page

    Conformal invariance of crossing probabilities for the Ising model with free boundary conditions

    Full text link
    We prove that crossing probabilities for the critical planar Ising model with free boundary conditions are conformally invariant in the scaling limit, a phenomenon first investigated numerically by Langlands, Lewis and Saint-Aubin. We do so by establishing the convergence of certain exploration processes towards SLE(3,−32,−32)(3,\frac{-3}2,\frac{-3}2). We also construct an exploration tree for free boundary conditions, analogous to the one introduced by Sheffield.Comment: 18 pages, 4 figures, v2: journal versio
    • …
    corecore