1,589 research outputs found

    Semantic-aware Texture-Structure Feature Collaboration for Underwater Image Enhancement

    Full text link
    Underwater image enhancement has become an attractive topic as a significant technology in marine engineering and aquatic robotics. However, the limited number of datasets and imperfect hand-crafted ground truth weaken its robustness to unseen scenarios, and hamper the application to high-level vision tasks. To address the above limitations, we develop an efficient and compact enhancement network in collaboration with a high-level semantic-aware pretrained model, aiming to exploit its hierarchical feature representation as an auxiliary for the low-level underwater image enhancement. Specifically, we tend to characterize the shallow layer features as textures while the deep layer features as structures in the semantic-aware model, and propose a multi-path Contextual Feature Refinement Module (CFRM) to refine features in multiple scales and model the correlation between different features. In addition, a feature dominative network is devised to perform channel-wise modulation on the aggregated texture and structure features for the adaptation to different feature patterns of the enhancement network. Extensive experiments on benchmarks demonstrate that the proposed algorithm achieves more appealing results and outperforms state-of-the-art methods by large margins. We also apply the proposed algorithm to the underwater salient object detection task to reveal the favorable semantic-aware ability for high-level vision tasks. The code is available at STSC.Comment: Accepted by ICRA202

    Is Underwater Image Enhancement All Object Detectors Need?

    Full text link
    Underwater object detection is a crucial and challenging problem in marine engineering and aquatic robot. The difficulty is partly because of the degradation of underwater images caused by light selective absorption and scattering. Intuitively, enhancing underwater images can benefit high-level applications like underwater object detection. However, it is still unclear whether all object detectors need underwater image enhancement as pre-processing. We therefore pose the questions "Does underwater image enhancement really improve underwater object detection?" and "How does underwater image enhancement contribute to underwater object detection?". With these two questions, we conduct extensive studies. Specifically, we use 18 state-of-the-art underwater image enhancement algorithms, covering traditional, CNN-based, and GAN-based algorithms, to pre-process underwater object detection data. Then, we retrain 7 popular deep learning-based object detectors using the corresponding results enhanced by different algorithms, obtaining 126 underwater object detection models. Coupled with 7 object detection models retrained using raw underwater images, we employ these 133 models to comprehensively analyze the effect of underwater image enhancement on underwater object detection. We expect this study can provide sufficient exploration to answer the aforementioned questions and draw more attention of the community to the joint problem of underwater image enhancement and underwater object detection. The pre-trained models and results are publicly available and will be regularly updated. Project page: https://github.com/BIGWangYuDong/lqit/tree/main/configs/detection/uw_enhancement_affect_detection.Comment: 17 pages, 9 figure

    Dual Adversarial Resilience for Collaborating Robust Underwater Image Enhancement and Perception

    Full text link
    Due to the uneven scattering and absorption of different light wavelengths in aquatic environments, underwater images suffer from low visibility and clear color deviations. With the advancement of autonomous underwater vehicles, extensive research has been conducted on learning-based underwater enhancement algorithms. These works can generate visually pleasing enhanced images and mitigate the adverse effects of degraded images on subsequent perception tasks. However, learning-based methods are susceptible to the inherent fragility of adversarial attacks, causing significant disruption in results. In this work, we introduce a collaborative adversarial resilience network, dubbed CARNet, for underwater image enhancement and subsequent detection tasks. Concretely, we first introduce an invertible network with strong perturbation-perceptual abilities to isolate attacks from underwater images, preventing interference with image enhancement and perceptual tasks. Furthermore, we propose a synchronized attack training strategy with both visual-driven and perception-driven attacks enabling the network to discern and remove various types of attacks. Additionally, we incorporate an attack pattern discriminator to heighten the robustness of the network against different attacks. Extensive experiments demonstrate that the proposed method outputs visually appealing enhancement images and perform averagely 6.71% higher detection mAP than state-of-the-art methods.Comment: 9 pages, 9 figure
    • …
    corecore