23,889 research outputs found

    Preliminary Experiments using Subjective Logic for the Polyrepresentation of Information Needs

    Full text link
    According to the principle of polyrepresentation, retrieval accuracy may improve through the combination of multiple and diverse information object representations about e.g. the context of the user, the information sought, or the retrieval system. Recently, the principle of polyrepresentation was mathematically expressed using subjective logic, where the potential suitability of each representation for improving retrieval performance was formalised through degrees of belief and uncertainty. No experimental evidence or practical application has so far validated this model. We extend the work of Lioma et al. (2010), by providing a practical application and analysis of the model. We show how to map the abstract notions of belief and uncertainty to real-life evidence drawn from a retrieval dataset. We also show how to estimate two different types of polyrepresentation assuming either (a) independence or (b) dependence between the information objects that are combined. We focus on the polyrepresentation of different types of context relating to user information needs (i.e. work task, user background knowledge, ideal answer) and show that the subjective logic model can predict their optimal combination prior and independently to the retrieval process

    A Reasoning System for a First-Order Logic of Limited Belief

    Full text link
    Logics of limited belief aim at enabling computationally feasible reasoning in highly expressive representation languages. These languages are often dialects of first-order logic with a weaker form of logical entailment that keeps reasoning decidable or even tractable. While a number of such logics have been proposed in the past, they tend to remain for theoretical analysis only and their practical relevance is very limited. In this paper, we aim to go beyond the theory. Building on earlier work by Liu, Lakemeyer, and Levesque, we develop a logic of limited belief that is highly expressive while remaining decidable in the first-order and tractable in the propositional case and exhibits some characteristics that make it attractive for an implementation. We introduce a reasoning system that employs this logic as representation language and present experimental results that showcase the benefit of limited belief.Comment: 22 pages, 0 figures, Twenty-sixth International Joint Conference on Artificial Intelligence (IJCAI-17

    Probabilistic Algorithmic Knowledge

    Full text link
    The framework of algorithmic knowledge assumes that agents use deterministic knowledge algorithms to compute the facts they explicitly know. We extend the framework to allow for randomized knowledge algorithms. We then characterize the information provided by a randomized knowledge algorithm when its answers have some probability of being incorrect. We formalize this information in terms of evidence; a randomized knowledge algorithm returning ``Yes'' to a query about a fact \phi provides evidence for \phi being true. Finally, we discuss the extent to which this evidence can be used as a basis for decisions.Comment: 26 pages. A preliminary version appeared in Proc. 9th Conference on Theoretical Aspects of Rationality and Knowledge (TARK'03

    Relational Representations in Reinforcement Learning: Review and Open Problems

    Get PDF
    This paper is about representation in RL.We discuss some of the concepts in representation and generalization in reinforcement learning and argue for higher-order representations, instead of the commonly used propositional representations. The paper contains a small review of current reinforcement learning systems using higher-order representations, followed by a brief discussion. The paper ends with research directions and open problems.\u
    • ā€¦
    corecore