2 research outputs found

    Bayesian Inference of Individualized Treatment Effects using Multi-task Gaussian Processes

    Full text link
    Predicated on the increasing abundance of electronic health records, we investi- gate the problem of inferring individualized treatment effects using observational data. Stemming from the potential outcomes model, we propose a novel multi- task learning framework in which factual and counterfactual outcomes are mod- eled as the outputs of a function in a vector-valued reproducing kernel Hilbert space (vvRKHS). We develop a nonparametric Bayesian method for learning the treatment effects using a multi-task Gaussian process (GP) with a linear coregion- alization kernel as a prior over the vvRKHS. The Bayesian approach allows us to compute individualized measures of confidence in our estimates via pointwise credible intervals, which are crucial for realizing the full potential of precision medicine. The impact of selection bias is alleviated via a risk-based empirical Bayes method for adapting the multi-task GP prior, which jointly minimizes the empirical error in factual outcomes and the uncertainty in (unobserved) counter- factual outcomes. We conduct experiments on observational datasets for an inter- ventional social program applied to premature infants, and a left ventricular assist device applied to cardiac patients wait-listed for a heart transplant. In both experi- ments, we show that our method significantly outperforms the state-of-the-art

    Treatment-Response Models for Counterfactual Reasoning with Continuous-time, Continuous-valued Interventions

    Full text link
    Treatment effects can be estimated from observational data as the difference in potential outcomes. In this paper, we address the challenge of estimating the potential outcome when treatment-dose levels can vary continuously over time. Further, the outcome variable may not be measured at a regular frequency. Our proposed solution represents the treatment response curves using linear time-invariant dynamical systems---this provides a flexible means for modeling response over time to highly variable dose curves. Moreover, for multivariate data, the proposed method: uncovers shared structure in treatment response and the baseline across multiple markers; and, flexibly models challenging correlation structure both across and within signals over time. For this, we build upon the framework of multiple-output Gaussian Processes. On simulated and a challenging clinical dataset, we show significant gains in accuracy over state-of-the-art models.Comment: In Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence (UAI-2017), Sydney, Australia, August 2017. The first two authors contributed equally to this wor
    corecore