24,803 research outputs found

    Generative Model with Coordinate Metric Learning for Object Recognition Based on 3D Models

    Full text link
    Given large amount of real photos for training, Convolutional neural network shows excellent performance on object recognition tasks. However, the process of collecting data is so tedious and the background are also limited which makes it hard to establish a perfect database. In this paper, our generative model trained with synthetic images rendered from 3D models reduces the workload of data collection and limitation of conditions. Our structure is composed of two sub-networks: semantic foreground object reconstruction network based on Bayesian inference and classification network based on multi-triplet cost function for avoiding over-fitting problem on monotone surface and fully utilizing pose information by establishing sphere-like distribution of descriptors in each category which is helpful for recognition on regular photos according to poses, lighting condition, background and category information of rendered images. Firstly, our conjugate structure called generative model with metric learning utilizing additional foreground object channels generated from Bayesian rendering as the joint of two sub-networks. Multi-triplet cost function based on poses for object recognition are used for metric learning which makes it possible training a category classifier purely based on synthetic data. Secondly, we design a coordinate training strategy with the help of adaptive noises acting as corruption on input images to help both sub-networks benefit from each other and avoid inharmonious parameter tuning due to different convergence speed of two sub-networks. Our structure achieves the state of the art accuracy of over 50\% on ShapeNet database with data migration obstacle from synthetic images to real photos. This pipeline makes it applicable to do recognition on real images only based on 3D models.Comment: 14 page

    Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection

    Full text link
    To assure that an autonomous car is driving safely on public roads, its object detection module should not only work correctly, but show its prediction confidence as well. Previous object detectors driven by deep learning do not explicitly model uncertainties in the neural network. We tackle with this problem by presenting practical methods to capture uncertainties in a 3D vehicle detector for Lidar point clouds. The proposed probabilistic detector represents reliable epistemic uncertainty and aleatoric uncertainty in classification and localization tasks. Experimental results show that the epistemic uncertainty is related to the detection accuracy, whereas the aleatoric uncertainty is influenced by vehicle distance and occlusion. The results also show that we can improve the detection performance by 1%-5% by modeling the aleatoric uncertainty.Comment: Accepted to present in the 21st IEEE International Conference on Intelligent Transportation Systems (ITSC 2018

    Multi-View Deep Learning for Consistent Semantic Mapping with RGB-D Cameras

    Full text link
    Visual scene understanding is an important capability that enables robots to purposefully act in their environment. In this paper, we propose a novel approach to object-class segmentation from multiple RGB-D views using deep learning. We train a deep neural network to predict object-class semantics that is consistent from several view points in a semi-supervised way. At test time, the semantics predictions of our network can be fused more consistently in semantic keyframe maps than predictions of a network trained on individual views. We base our network architecture on a recent single-view deep learning approach to RGB and depth fusion for semantic object-class segmentation and enhance it with multi-scale loss minimization. We obtain the camera trajectory using RGB-D SLAM and warp the predictions of RGB-D images into ground-truth annotated frames in order to enforce multi-view consistency during training. At test time, predictions from multiple views are fused into keyframes. We propose and analyze several methods for enforcing multi-view consistency during training and testing. We evaluate the benefit of multi-view consistency training and demonstrate that pooling of deep features and fusion over multiple views outperforms single-view baselines on the NYUDv2 benchmark for semantic segmentation. Our end-to-end trained network achieves state-of-the-art performance on the NYUDv2 dataset in single-view segmentation as well as multi-view semantic fusion.Comment: the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017
    • …
    corecore