3 research outputs found

    Computationally Efficient Forward Operator for Photoacoustic Tomography Based on Coordinate Transformations

    Get PDF
    IEEE Photoacoustic tomography (PAT) is an imaging modality that utilizes the photoacoustic effect. In PAT, a photoacoustic image is computed from measured data by modeling ultrasound propagation in the imaged domain and solving an inverse problem utilizing a discrete forward operator. However, in realistic measurement geometries with several ultrasound transducers and relatively large imaging volume, an explicit formation and use of the forward operator can be computationally prohibitively expensive. In this work, we propose a transformation based approach for efficient modeling of photoacoustic signals and reconstruction of photoacoustic images. In the approach, the forward operator is constructed for a reference ultrasound transducer and expanded into a general measurement geometry using transformations that map the formulated forward operator in local coordinates to the global coordinates of the measurement geometry. The inverse problem is solved using a Bayesian framework. The approach is evaluated with numerical simulations and experimental data. The results show that the proposed approach produces accurate three-dimensional photoacoustic images with a significantly reduced computational cost both in memory requirements and in time. In the studied cases, depending on the computational factors such as discretization, over 30-fold reduction in memory consumption and was achieved without a reduction in image quality compared to a conventional approach

    A bayesian approach to eigenspectra optoacoustic tomography.

    No full text
    The quantification of hemoglobin oxygen saturation (sO(2)) with multispectral optoacoustic (OA) (photoacoustic) tomography (MSOT) is a complex spectral unmixing problem, since the OA spectra of hemoglobin are modified with tissue depth due to depth (location) and wavelength dependencies of optical fluence in tissue. In a recent work, a method termed eigenspectra MSOT (eMSOT) was proposed for addressing the dependence of spectra on fluence and quantifying blood sO(2) in deep tissue. While eMSOT offers enhanced sO(2) quantification accuracy over conventional unmixing methods, its performance may be compromised by noise and image reconstruction artifacts. In this paper, we propose a novel Bayesian method to improve eMSOT performance in noisy environments. We introduce a spectral reliability map, i.e., a method that can estimate the level of noise superimposed onto the recorded OA spectra. Using this noise estimate, we formulate eMSOT as a Bayesian inverse problem where the inversion constraints are based on probabilistic graphical models. Results based on numerical simulations indicate that the proposed method offers improved accuracy and robustness under high noise levels due the adaptive nature of the Bayesian method
    corecore