3,441 research outputs found

    Bayesian nonparametric sparse VAR models

    Get PDF
    High dimensional vector autoregressive (VAR) models require a large number of parameters to be estimated and may suffer of inferential problems. We propose a new Bayesian nonparametric (BNP) Lasso prior (BNP-Lasso) for high-dimensional VAR models that can improve estimation efficiency and prediction accuracy. Our hierarchical prior overcomes overparametrization and overfitting issues by clustering the VAR coefficients into groups and by shrinking the coefficients of each group toward a common location. Clustering and shrinking effects induced by the BNP-Lasso prior are well suited for the extraction of causal networks from time series, since they account for some stylized facts in real-world networks, which are sparsity, communities structures and heterogeneity in the edges intensity. In order to fully capture the richness of the data and to achieve a better understanding of financial and macroeconomic risk, it is therefore crucial that the model used to extract network accounts for these stylized facts.Comment: Forthcoming in "Journal of Econometrics" ---- Revised Version of the paper "Bayesian nonparametric Seemingly Unrelated Regression Models" ---- Supplementary Material available on reques

    Identifying Mixtures of Mixtures Using Bayesian Estimation

    Get PDF
    The use of a finite mixture of normal distributions in model-based clustering allows to capture non-Gaussian data clusters. However, identifying the clusters from the normal components is challenging and in general either achieved by imposing constraints on the model or by using post-processing procedures. Within the Bayesian framework we propose a different approach based on sparse finite mixtures to achieve identifiability. We specify a hierarchical prior where the hyperparameters are carefully selected such that they are reflective of the cluster structure aimed at. In addition this prior allows to estimate the model using standard MCMC sampling methods. In combination with a post-processing approach which resolves the label switching issue and results in an identified model, our approach allows to simultaneously (1) determine the number of clusters, (2) flexibly approximate the cluster distributions in a semi-parametric way using finite mixtures of normals and (3) identify cluster-specific parameters and classify observations. The proposed approach is illustrated in two simulation studies and on benchmark data sets.Comment: 49 page

    Stochastic expansions using continuous dictionaries: L\'{e}vy adaptive regression kernels

    Get PDF
    This article describes a new class of prior distributions for nonparametric function estimation. The unknown function is modeled as a limit of weighted sums of kernels or generator functions indexed by continuous parameters that control local and global features such as their translation, dilation, modulation and shape. L\'{e}vy random fields and their stochastic integrals are employed to induce prior distributions for the unknown functions or, equivalently, for the number of kernels and for the parameters governing their features. Scaling, shape, and other features of the generating functions are location-specific to allow quite different function properties in different parts of the space, as with wavelet bases and other methods employing overcomplete dictionaries. We provide conditions under which the stochastic expansions converge in specified Besov or Sobolev norms. Under a Gaussian error model, this may be viewed as a sparse regression problem, with regularization induced via the L\'{e}vy random field prior distribution. Posterior inference for the unknown functions is based on a reversible jump Markov chain Monte Carlo algorithm. We compare the L\'{e}vy Adaptive Regression Kernel (LARK) method to wavelet-based methods using some of the standard test functions, and illustrate its flexibility and adaptability in nonstationary applications.Comment: Published in at http://dx.doi.org/10.1214/11-AOS889 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Cascaded High Dimensional Histograms: A Generative Approach to Density Estimation

    Full text link
    We present tree- and list- structured density estimation methods for high dimensional binary/categorical data. Our density estimation models are high dimensional analogies to variable bin width histograms. In each leaf of the tree (or list), the density is constant, similar to the flat density within the bin of a histogram. Histograms, however, cannot easily be visualized in higher dimensions, whereas our models can. The accuracy of histograms fades as dimensions increase, whereas our models have priors that help with generalization. Our models are sparse, unlike high-dimensional histograms. We present three generative models, where the first one allows the user to specify the number of desired leaves in the tree within a Bayesian prior. The second model allows the user to specify the desired number of branches within the prior. The third model returns lists (rather than trees) and allows the user to specify the desired number of rules and the length of rules within the prior. Our results indicate that the new approaches yield a better balance between sparsity and accuracy of density estimates than other methods for this task.Comment: 27 pages, 13 figure
    • …
    corecore