79 research outputs found

    Statistical Learning in Automated Troubleshooting: Application to LTE Interference Mitigation

    Full text link
    This paper presents a method for automated healing as part of off-line automated troubleshooting. The method combines statistical learning with constraint optimization. The automated healing aims at locally optimizing radio resource management (RRM) or system parameters of cells with poor performance in an iterative manner. The statistical learning processes the data using Logistic Regression (LR) to extract closed form (functional) relations between Key Performance Indicators (KPIs) and Radio Resource Management (RRM) parameters. These functional relations are then processed by an optimization engine which proposes new parameter values. The advantage of the proposed formulation is the small number of iterations required by the automated healing method to converge, making it suitable for off-line implementation. The proposed method is applied to heal an Inter-Cell Interference Coordination (ICIC) process in a 3G Long Term Evolution (LTE) network which is based on soft-frequency reuse scheme. Numerical simulations illustrate the benefits of the proposed approach.Comment: IEEE Transactions On Vehicular Technology 2010 IEEE transactions on vehicular technolog

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Neuromorphic AI Empowered Root Cause Analysis of Faults in Emerging Networks

    Full text link
    Mobile cellular network operators spend nearly a quarter of their revenue on network maintenance and management. A significant portion of that budget is spent on resolving faults diagnosed in the system that disrupt or degrade cellular services. Historically, the operations to detect, diagnose and resolve issues were carried out by human experts. However, with diversifying cell types, increased complexity and growing cell density, this methodology is becoming less viable, both technically and financially. To cope with this problem, in recent years, research on self-healing solutions has gained significant momentum. One of the most desirable features of the self-healing paradigm is automated fault diagnosis. While several fault detection and diagnosis machine learning models have been proposed recently, these schemes have one common tenancy of relying on human expert contribution for fault diagnosis and prediction in one way or another. In this paper, we propose an AI-based fault diagnosis solution that offers a key step towards a completely automated self-healing system without requiring human expert input. The proposed solution leverages Random Forests classifier, Convolutional Neural Network and neuromorphic based deep learning model which uses RSRP map images of faults generated. We compare the performance of the proposed solution against state-of-the-art solution in literature that mostly use Naive Bayes models, while considering seven different fault types. Results show that neuromorphic computing model achieves high classification accuracy as compared to the other models even with relatively small training dat

    Clustering Optimisation Techniques in Mobile Networks

    Get PDF
    The use of mobile phones has exploded over the past years, abundantly through the introduction of smartphones and the rapidly expanding use of mobile data. This has resulted in a spiraling problem of ensuring quality of service for users of mobile networks. Hence, mobile carriers and service providers need to determine how to prioritise expansion decisions and optimise network faults to ensure customer satisfaction and optimal network performance. To assist in that decision-making process, this research employs data mining classification of different Key Performance Indicator datasets to develop a monitoring scheme for mobile networks as a means of identifying the causes of network malfunctions. Then, the data are clustered to observe the characteristics of the technical areas with the use of k-means clustering. The data output is further trained with decision tree classification algorithms. The end result was that this method of network optimisation allowed for significantly improved fault detection performance

    Clustering Optimisation Techniques in Mobile Networks

    Get PDF
    The use of mobile phones has exploded over the past years, abundantly through the introduction of smartphones and the rapidly expanding use of mobile data. This has resulted in a spiraling problem of ensuring quality of service for users of mobile networks. Hence, mobile carriers and service providers need to determine how to prioritise expansion decisions and optimise network faults to ensure customer satisfaction and optimal network performance. To assist in that decision-making process, this research employs data mining classification of different Key Performance Indicator datasets to develop a monitoring scheme for mobile networks as a means of identifying the causes of network malfunctions. Then, the data are clustered to observe the characteristics of the technical areas with the use of k-means clustering. The data output is further trained with decision tree classification algorithms. The end result was that this method of network optimisation allowed for significantly improved fault detection performance

    Clustering Optimisation Techniques in Mobile Networks

    Get PDF
    The use of mobile phones has exploded over the past years, abundantly through the introduction of smartphones and the rapidly expanding use of mobile data. This has resulted in a spiraling problem of ensuring quality of service for users of mobile networks. Hence, mobile carriers and service providers need to determine how to prioritise expansion decisions and optimise network faults to ensure customer satisfaction and optimal network performance. To assist in that decision-making process, this research employs data mining classification of different Key Performance Indicator datasets to develop a monitoring scheme for mobile networks as a means of identifying the causes of network malfunctions. Then, the data are clustered to observe the characteristics of the technical areas with the use of k-means clustering. The data output is further trained with decision tree classification algorithms. The end result was that this method of network optimisation allowed for significantly improved fault detection performance

    Clustering Optimisation Techniques in Mobile Networks

    Get PDF
    The use of mobile phones has exploded over the past years, abundantly through the introduction of smartphones and the rapidly expanding use of mobile data. This has resulted in a spiraling problem of ensuring quality of service for users of mobile networks. Hence, mobile carriers and service providers need to determine how to prioritise expansion decisions and optimise network faults to ensure customer satisfaction and optimal network performance. To assist in that decision-making process, this research employs data mining classification of different Key Performance Indicator datasets to develop a monitoring scheme for mobile networks as a means of identifying the causes of network malfunctions. Then, the data are clustered to observe the characteristics of the technical areas with the use of k-means clustering. The data output is further trained with decision tree classification algorithms. The end result was that this method of network optimisation allowed for significantly improved fault detection performance

    Clustering Optimisation Techniques in Mobile Networks

    Get PDF
    The use of mobile phones has exploded over the past years, abundantly through the introduction of smartphones and the rapidly expanding use of mobile data. This has resulted in a spiraling problem of ensuring quality of service for users of mobile networks. Hence, mobile carriers and service providers need to determine how to prioritise expansion decisions and optimise network faults to ensure customer satisfaction and optimal network performance. To assist in that decision-making process, this research employs data mining classification of different Key Performance Indicator datasets to develop a monitoring scheme for mobile networks as a means of identifying the causes of network malfunctions. Then, the data are clustered to observe the characteristics of the technical areas with the use of k-means clustering. The data output is further trained with decision tree classification algorithms. The end result was that this method of network optimisation allowed for significantly improved fault detection performance

    Clustering Optimisation Techniques in Mobile Networks

    Get PDF
    The use of mobile phones has exploded over the past years,abundantly through the introduction of smartphones and the rapidly expanding use of mobile data. This has resulted in a spiraling problem of ensuring quality of service for users of mobile networks. Hence, mobile carriers and service providers need to determine how to prioritise expansion decisions and optimise network faults to ensure customer satisfaction and optimal network performance. To assist in that decision-making process, this research employs data mining classification of different Key Performance Indicator datasets to develop a monitoring scheme for mobile networks as a means of identifying the causes of network malfunctions. Then, the data are clustered to observe the characteristics of the technical areas with the use of k-means clustering. The data output is further trained with decision tree classification algorithms. The end result was that this method of network optimisation allowed for significantly improved fault detection performanceComment: 8 pages, 4 figure
    • …
    corecore