47,979 research outputs found

    Prediction of peptide and protein propensity for amyloid formation

    Get PDF
    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation

    Abundance of intrinsic disorder in SV-IV, a multifunctional androgen-dependent protein secreted from rat seminal vesicle

    Get PDF
    The potent immunomodulatory, anti-inflammatory and procoagulant properties of the
protein no. 4 secreted from the rat seminal vesicle epithelium (SV-IV) have been
previously found to be modulated by a supramolecular monomer-trimer equilibrium.
More structural details that integrate experimental data into a predictive framework
have recently been reported. Unfortunately, homology modelling and fold-recognition
strategies were not successful in creating a theoretical model of the structural
organization of SV-IV. It was inferred that the global structure of SV-IV is not similar
to any protein of known three-dimensional structure. Reversing the classical approach
to the sequence-structure-function paradigm, in this paper we report on novel
information obtained by comparing physicochemical parameters of SV-IV with two
datasets made of intrinsically unfolded and ideally globular proteins. In addition, we
have analysed the SV-IV sequence by several publicly available disorder-oriented
predictors. Overall, disorder predictions and a re-examination of existing experimental
data strongly suggest that SV-IV needs large plasticity to efficiently interact with the
different targets that characterize its multifaceted biological function and should be
therefore better classified as an intrinsically disordered protein

    Legal Judgement Prediction for UK Courts

    Get PDF
    Legal Judgement Prediction (LJP) is the task of automatically predicting the outcome of a court case given only the case document. During the last five years researchers have successfully attempted this task for the supreme courts of three jurisdictions: the European Union, France, and China. Motivation includes the many real world applications including: a prediction system that can be used at the judgement drafting stage, and the identification of the most important words and phrases within a judgement. The aim of our research was to build, for the first time, an LJP model for UK court cases. This required the creation of a labelled data set of UK court judgements and the subsequent application of machine learning models. We evaluated different feature representations and different algorithms. Our best performing model achieved: 69.05% accuracy and 69.02 F1 score. We demonstrate that LJP is a promising area of further research for UK courts by achieving high model performance and the ability to easily extract useful features

    Structural Material Property Tailoring Using Deep Neural Networks

    Full text link
    Advances in robotics, artificial intelligence, and machine learning are ushering in a new age of automation, as machines match or outperform human performance. Machine intelligence can enable businesses to improve performance by reducing errors, improving sensitivity, quality and speed, and in some cases achieving outcomes that go beyond current resource capabilities. Relevant applications include new product architecture design, rapid material characterization, and life-cycle management tied with a digital strategy that will enable efficient development of products from cradle to grave. In addition, there are also challenges to overcome that must be addressed through a major, sustained research effort that is based solidly on both inferential and computational principles applied to design tailoring of functionally optimized structures. Current applications of structural materials in the aerospace industry demand the highest quality control of material microstructure, especially for advanced rotational turbomachinery in aircraft engines in order to have the best tailored material property. In this paper, deep convolutional neural networks were developed to accurately predict processing-structure-property relations from materials microstructures images, surpassing current best practices and modeling efforts. The models automatically learn critical features, without the need for manual specification and/or subjective and expensive image analysis. Further, in combination with generative deep learning models, a framework is proposed to enable rapid material design space exploration and property identification and optimization. The implementation must take account of real-time decision cycles and the trade-offs between speed and accuracy
    corecore