47,979 research outputs found
Prediction of peptide and protein propensity for amyloid formation
Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation
Recommended from our members
An Overview of the Use of Neural Networks for Data Mining Tasks
In the recent years the area of data mining has experienced a considerable demand for technologies that extract knowledge from large and complex data sources. There is a substantial commercial interest as well as research investigations in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from datasets. Artificial Neural Networks (NN) are popular biologically inspired intelligent methodologies, whose classification, prediction and pattern recognition capabilities have been utilised successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks
Abundance of intrinsic disorder in SV-IV, a multifunctional androgen-dependent protein secreted from rat seminal vesicle
The potent immunomodulatory, anti-inflammatory and procoagulant properties of the
protein no. 4 secreted from the rat seminal vesicle epithelium (SV-IV) have been
previously found to be modulated by a supramolecular monomer-trimer equilibrium.
More structural details that integrate experimental data into a predictive framework
have recently been reported. Unfortunately, homology modelling and fold-recognition
strategies were not successful in creating a theoretical model of the structural
organization of SV-IV. It was inferred that the global structure of SV-IV is not similar
to any protein of known three-dimensional structure. Reversing the classical approach
to the sequence-structure-function paradigm, in this paper we report on novel
information obtained by comparing physicochemical parameters of SV-IV with two
datasets made of intrinsically unfolded and ideally globular proteins. In addition, we
have analysed the SV-IV sequence by several publicly available disorder-oriented
predictors. Overall, disorder predictions and a re-examination of existing experimental
data strongly suggest that SV-IV needs large plasticity to efficiently interact with the
different targets that characterize its multifaceted biological function and should be
therefore better classified as an intrinsically disordered protein
Legal Judgement Prediction for UK Courts
Legal Judgement Prediction (LJP) is the task of automatically predicting the outcome of a court case given only the case document. During the last five years researchers have successfully attempted this task for the supreme courts of three jurisdictions: the European Union, France, and China. Motivation includes the many real world applications including: a prediction system that can be used at the judgement drafting stage, and the identification of the most important words and phrases within a judgement. The aim of our research was to build, for the first time, an LJP model for UK court cases. This required the creation of a labelled data set of UK court judgements and the subsequent application of machine learning models. We evaluated different feature representations and different algorithms. Our best performing model achieved: 69.05% accuracy and 69.02 F1 score. We demonstrate that LJP is a promising area of further research for UK courts by achieving high model performance and the ability to easily extract useful features
Structural Material Property Tailoring Using Deep Neural Networks
Advances in robotics, artificial intelligence, and machine learning are
ushering in a new age of automation, as machines match or outperform human
performance. Machine intelligence can enable businesses to improve performance
by reducing errors, improving sensitivity, quality and speed, and in some cases
achieving outcomes that go beyond current resource capabilities. Relevant
applications include new product architecture design, rapid material
characterization, and life-cycle management tied with a digital strategy that
will enable efficient development of products from cradle to grave. In
addition, there are also challenges to overcome that must be addressed through
a major, sustained research effort that is based solidly on both inferential
and computational principles applied to design tailoring of functionally
optimized structures. Current applications of structural materials in the
aerospace industry demand the highest quality control of material
microstructure, especially for advanced rotational turbomachinery in aircraft
engines in order to have the best tailored material property. In this paper,
deep convolutional neural networks were developed to accurately predict
processing-structure-property relations from materials microstructures images,
surpassing current best practices and modeling efforts. The models
automatically learn critical features, without the need for manual
specification and/or subjective and expensive image analysis. Further, in
combination with generative deep learning models, a framework is proposed to
enable rapid material design space exploration and property identification and
optimization. The implementation must take account of real-time decision cycles
and the trade-offs between speed and accuracy
- …
