3 research outputs found

    A 65-nm CMOS Temperature-Compensated Mobility-Based Frequency reference for wireless sensor networks

    Get PDF
    For the first time, a temperature-compensated CMOS frequency reference based on the electron mobility in a MOS transistor is presented. Over the temperature range from -55°C to 125 °C, its frequency spread is less than ±0.5% after a two-point trim and less than ±2.7% after a one-point trim. These results make it suitable for use in Wireless Sensor Network nodes. Fabricated in a baseline 65-nm CMOS process, the 150 kHz frequency reference occupies 0.2 mm2 and draws 42.6 μA from a 1.2-V supply at room temperature.\ud \u

    Crystal-Less RF Communication Integrated Circuits for Wireless Sensor Networks.

    Full text link
    The evolution of computing devices has changed daily life significantly over the past decades, and it is still advancing towards pervasive and ubiquitous networks. At each step, the volume shrinks by 2-3 orders of magnitude while the functionality and computing power remains constant or increases. Wireless sensor networks (WSN) are perceived as the next big step of computing technology for a variety of applications, including environmental sensing, health monitoring, un-obtrusive surveillance and invisible labeling. With thin-film micro-battery technology and CMOS scaling, we can now envision complete sensor nodes with cubic-mm form factors. As node volume reduces, external components like a crystal frequency reference, which does not scale with frequency or process, becomes one of the bottlenecks of realizing cubic-mm WSN node devices. This dissertation covers several aspects of the energy and integration challenges associated with cubic-mm WSN nodes without crystal references. Several new compact and low-power RF circuits for the synchronization and communication of WSN nodes are proposed and discussed. A 60GHz antenna-referenced frequency-locked loop (FLL) using an on-chip patch antenna as both the radiator and the frequency reference has been demonstrated for RF synchronization. The FLL, targeting communication of non-coherent energy detection systems, provides adequate frequency accuracy without crystal references. A 10GHz ultra-wideband (UWB) crystal-less transmitter with an on-chip monopole antenna has also been demonstrated. It operates over the supply voltage range of a micro-battery; generate tunable pulse durations and center frequencies, and lives on an on-chip local decoupling capacitor only. A 1MHz temperature-compensated relaxation oscillator is also proposed in the dissertation for baseband data synchronization. With the modified RC network of the conventional relaxation oscillator, the transfer function of the network has a transmission zero, introducing an additional degree-of-freedom for temperature compensation design. Finally, a 60GHz transmit/receive (T/R) switch-less antenna front-end using an on-chip patch antenna is presented, which has an in-band isolation inherited from the standing wave pattern without implementing a T/R switch. The research projects have explored the circuit design techniques and system integration for cubic-mm energy-constrained devices, achieving both long lifetimes and small volumes for WSN applications.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/99763/1/kkhuang_1.pd

    Variability-aware design of CMOS nanopower reference circuits

    Get PDF
    Questo lavoro è inserito nell'ambito della progettazione di circuiti microelettronici analogici con l'uso di tecnologie scalate, per le quali ha sempre maggiore importanza il problema della sensibilità delle grandezze alle variazioni di processo. Viene affrontata la progettazione di generatori di quantità di riferimento molto precisi, basati sull’uso di dispositivi che sono disponibili anche in tecnologie CMOS standard e che sono “intrinsecamente” più robusti rispetto alle variazioni di processo. Questo ha permesso di ottenere una bassa sensibilità al processo insieme ad un consumo di potenza estremamente ridotto, con il principale svantaggio di una elevata occupazione di area. Tutti i risultati sono stati ottenuti in una tecnologia 0.18μm CMOS. In particolare, abbiamo progettato un riferimento di tensione, ottenendo una deviazione standard relativa della tensione di riferimento dello 0.18% e un consumo di potenza inferiore a 70 nW, sulla base di misure su un set di 20 campioni di un singolo batch. Sono anche disponibili risultati relativi alla variabilità inter batch, che mostrano una deviazione standard relativa cumulativa della tensione di riferimento dello 0.35%. Abbiamo quindi progettato un riferimento di corrente, ottenendo anche in questo caso una sensibilità al processo della corrente di riferimento dell’1.4% con un consumo di potenza inferiore a 300 nW (questi sono risultati sperimentali ottenuti dalle misure su 20 campioni di un singolo batch). I riferimenti di tensione e di corrente proposti sono stati quindi utilizzati per la progettazione di un oscillatore a rilassamento a bassa frequenza, che unisce una ridotta sensibilità al processo, inferiore al 2%, con un basso consumo di potenza, circa 300 nW, ottenuto sulla base di simulazioni circuitali. Infine, nella progettazione dei blocchi sopra menzionati, abbiamo applicato un metodo per la determinazione della stabilità dei punti di riposo, basato sull’uso dei CAD standard utilizzati per la progettazione microelettronica. Questo approccio ci ha permesso di determinare la stabilità dei punti di riposo desiderati, e ci ha anche permesso di stabilire che i circuiti di start up spesso non sono necessari
    corecore