5 research outputs found

    Energy efficient control for power management circuits operating from nano-watts to watts

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 163-172).Energy efficiency and form factor are the key driving forces in today's power electronics. All power delivery circuits, irrespective of the magnitude of power, basically consists of power trains, gate drivers and control circuits. Although the control circuits are primarily required for regulation, these circuits can play a crucial role in achieving high efficiency and/or minimizing overall system form-factor. In this thesis, power converter circuits, spanning a wide operating range- from nano-watts to watts, are presented while highlighting techniques for using digital control circuits not just for regulation but also to achieve high system efficiency and smaller system form-factor. The first part of the thesis presents a power management unit of an autonomous wireless sensor that sustains itself by harvesting energy from the endo-cochlear potential (EP), the 70-100mV electrochemical potential inside the mammalian inner ear. Due to the anatomical constraints, the total extractable power from the EP is limited to 1.1-6.3nW. A low switching frequency boost converter is employed to increase the input voltage to a higher voltage usable by CMOS circuits in the sensor. Ultra-low power digital control circuits with timers help keep the quiescent power of the power management unit down to 544pW. Further, a charge-pump is used to implement leakage reduction techniques in the sensor. This work demonstrates how digital low power control circuit design can help improve converter efficiency and ensure system sustainability. All circuits have been implemented on a 0.18[mu]m CMOS process. The second part of the thesis discusses an energy harvesting architecture that combines energy from multiple energy harvesting sources- photovoltaic, thermoelectric and piezoelectric sources. Digital control circuits that configure the power trains to new efficient system architectures with maximum power point tracking are presented, while using a single inductor to combine energy from the aforementioned energy sources all at the same time. A dual-path architecture for energy harvesting systems is proposed. This provides a peak efficiency improvement of 11-13% over the traditional two stage approach. The system can handle input voltages from 20mV to 5V and is also capable of extracting maximum power from individual harvesters all at the same time utilizing a single inductor. A proposed completely digital timebased power monitor is used for achieving maximum power point tracking for the photovoltaic harvester. This has a peak tracking efficiency of 96%. The peak efficiencies achieved with inductor sharing are 83%, 58% and 79% for photovoltaic boost, thermoelectric boost and piezoelectric buck-boost converters respectively. The switch matrix and the control circuits are implemented on a 0.35pm CMOS process. This part of the thesis highlights how digital control circuits can help reconfigure power converter architectures for improving efficiency and reducing form-factors. The last part of the thesis deals with a power management system for an offline 22W LED driver. In order to reduce the system form factor, Gallium Nitride (GaN) transistors capable of high frequency switching have been utilized with a Quasi-Resonant Inverted Buck architecture. A burst mode digital controller has been used to perform dimming control and power factor correction (PFC) for the LED driver. The custom controller and driver IC was implemented in a 0.35[mu]m CMOS process. The LED driver achieves a peak efficiency of 90.6% and a 0.96 power factor. Due to the high power level of the driver, the digital controller is primarily used for regulation purposes in this system, although the digital nature of the controller helps remove the passives that would be normally present in analog controllers. In this thesis, apart from regulation, control circuit enabled techniques have been used to improve efficiency and reduce system form factor. Low power design and control for reconfigurable power train architectures help improve the overall power converter efficiency. Digital control circuits have been used to reduce the form factor by enabling inductor sharing in a system with multiple power converters or by removing the compensator passives.by Saurav Bandyopadhyay.Ph.D

    Power Management Circuits for Energy Harvesting Applications

    Get PDF
    Energy harvesting is the process of converting ambient available energy into usable electrical energy. Multiple types of sources are can be used to harness environmental energy: solar cells, kinetic transducers, thermal energy, and electromagnetic waves. This dissertation proposal focuses on the design of high efficiency, ultra-low power, power management units for DC energy harvesting sources. New architectures and design techniques are introduced to achieve high efficiency and performance while achieving maximum power extraction from the sources. The first part of the dissertation focuses on the application of inductive switching regulators and their use in energy harvesting applications. The second implements capacitive switching regulators to minimize the use of external components and present a minimal footprint solution for energy harvesting power management. Analysis and theoretical background for all switching regulators and linear regulators are described in detail. Both solutions demonstrate how low power, high efficiency design allows for a self-sustaining, operational device which can tackle the two main concerns for energy harvesting: maximum power extraction and voltage regulation. Furthermore, a practical demonstration with an Internet of Things type node is tested and positive results shown by a fully powered device from harvested energy. All systems were designed, implemented and tested to demonstrate proof-of-concept prototypes

    A 60mV-3V Wide-Input-Voltage-Range Boost Converter with Amplitude-Regulated Oscillator for Energy Harvesting

    No full text

    MME2010 21st Micromechanics and Micro systems Europe Workshop : Abstracts

    Get PDF

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book
    corecore