2 research outputs found

    A Thermal Management System to Reuse Thermal Waste Released by High-Power Light-Emitting Diodes

    Full text link
    © 1963-2012 IEEE. In this article, a comprehensive and efficient thermal management system is proposed to harvest and reuse the thermal waste of high-power light-emitting diodes (HP-LEDs) for the first time. Besides a conventional cooling system, including a thermoelectric (TE) cooler (TEC), a heatsink, and a fan, the proposed thermal management system also employs a TE generator (TEG), a temperature sensor, a voltage boost converter, and a microcontroller for thermal waste recycling. In this system, some of the thermal waste released by the HP-LED is harvested by the TEG and converted into electrical energy. With the help of a voltage boost converter, the harvested electrical power is used to power a temperature sensor for monitoring the surface temperature of the HP-LED. The entire system is regulated by the microcontroller. The system is elaborately established, tested, and the results are discussed. The experimental results show that the proposed system has an output electrical power of approximately 696.5μW , which is used to power a temperature sensor as a demonstration. The sensor works well, and the discrepancy of the surface temperature of the HP-LED measured by the sensor and by a thermometer is less than 5.38%, which validates the proposed thermal management system

    Analysis and Design of Energy Efficient Frequency Synthesizers for Wireless Integrated Systems

    Full text link
    Advances in ultra-low power (ULP) circuit technologies are expanding the IoT applications in our daily life. However, wireless connectivity, small form factor and long lifetime are still the key constraints for many envisioned wearable, implantable and maintenance-free monitoring systems to be practically deployed at a large scale. The frequency synthesizer is one of the most power hungry and complicated blocks that not only constraints RF performance but also offers subtle scalability with power as well. Furthermore, the only indispensable off-chip component, the crystal oscillator, is also associated with the frequency synthesizer as a reference. This thesis addresses the above issues by analyzing how phase noise of the LO affect the frequency modulated wireless system in different aspects and how different noise sources in the PLL affect the performance. Several chip prototypes have been demonstrated including: 1) An ULP FSK transmitter with SAR assisted FLL; 2) A ring oscillator based all-digital BLE transmitter utilizing a quarter RF frequency LO and 4X frequency multiplier; and 3) An XO-less BLE transmitter with an RF reference recovery receiver. The first 2 designs deal with noise sources in the PLL loop for ultimate power and cost reduction, while the third design deals with the reference noise outside the PLL and explores a way to replace the XO in ULP wireless edge nodes. And at last, a comprehensive PN theory is proposed as the design guideline.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153420/1/chenxing_1.pd
    corecore