3 research outputs found

    A 440pJ/bit 1Mb/s 2.4GHz multi-channel FBAR-based TX and an integrated pulse-shaping PA

    Get PDF
    A 2.4GHz TX in 65nm CMOS defines three channels using three high-Q FBARs and supports OOK, BPSK and MSK. The oscillators have -132dBc/Hz phase noise at 1MHz offset, and are multiplexed to an efficient resonant buffer. Optimized for low output power β‰ˆ-10dBm, a fully-integrated PA implements 7.5dB dynamic output power range using a dynamic impedance transformation network, and is used for amplitude pulse-shaping. Peak PA efficiency is 44.4% and peak TX efficiency is 33%. The entire TX consumes 440pJ/bit at 1Mb/s.Interconnect Focus Center (United States. Defense Advanced Research Projects Agency and Semiconductor Research Corporation

    Experimental study of the interplay of channel and network coding in low power sensor applications

    Get PDF
    In this paper, we evaluate the performance of random linear network coding (RLNC) in low data rate indoor sensor applications operating in the ISM frequency band. We also investigate the results of its synergy with forward error correction (FEC) codes at the PHY-layer in a joint channel-network coding (JCNC) scheme. RLNC is an emerging coding technique which can be used as a packet-level erasure code, usually implemented at the network layer, which increases data reliability against channel fading and severe interference, while FEC codes are mainly used for correction of random bit errors within a received packet. The hostile wireless environment that low power sensors usually operate in, with significant interference from nearby networks, motivates us to consider a joint coding scheme and examine the applicability of RLNC as an erasure code in such a coding structure. Our analysis and experiments are performed using a custom low power sensor node, which integrates on-chip a low-power 2.4 GHz transmitter and an accelerator implementing a multi-rate convolutional code and RLNC, in a typical office environment. According to measurement results, RLNC of code rate 4/8 can provide an effective SNR improvement of about 3.4 dB, outperforming a PHY-layer FEC code of the same code rate, at a PER of 10[superscript -2]. In addition, RLNC performs very well when used in conjunction with a PHY-layer FEC code as a JCNC scheme, offering an overall coding gain of 5.6 dB.Focus Center Research Program. Focus Center for Circuit & System Solutions. Semiconductor Research Corporation. Interconnect Focus Cente

    Ultra-low-power circuits and systems for wearable and implantable medical devices

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 219-231).Advances in circuits, sensors, and energy storage elements have opened up many new possibilities in the health industry. In the area of wearable devices, the miniaturization of electronics has spurred the rapid development of wearable vital signs, activity, and fitness monitors. Maximizing the time between battery recharge places stringent requirements on power consumption by the device. For implantable devices, the situation is exacerbated by the fact that energy storage capacity is limited by volume constraints, and frequent battery replacement via surgery is undesirable. In this case, the design of energy-efficient circuits and systems becomes even more crucial. This thesis explores the design of energy-efficient circuits and systems for two medical applications. The first half of the thesis focuses on the design and implementation of an ultra-low-power, mixed-signal front-end for a wearable ECG monitor in a 0.18pm CMOS process. A mixed-signal architecture together with analog circuit optimizations enable ultra-low-voltage operation at 0.6V which provides power savings through voltage scaling, and ensures compatibility with state-of-the-art DSPs. The fully-integrated front-end consumes just 2.9[mu]W, which is two orders of magnitude lower than commercially available parts. The second half of this thesis focuses on ultra-low-power system design and energy-efficient neural stimulation for a proof-of-concept fully-implantable cochlear implant. First, implantable acoustic sensing is demonstrated by sensing the motion of a human cadaveric middle ear with a piezoelectric sensor. Second, alternate energy-efficient electrical stimulation waveforms are investigated to reduce neural stimulation power when compared to the conventional rectangular waveform. The energy-optimal waveform is analyzed using a computational nerve fiber model, and validated with in-vivo ECAP recordings in the auditory nerve of two cats and with psychophysical tests in two human cochlear implant users. Preliminary human subject testing shows that charge and energy savings of 20-30% and 15-35% respectively are possible with alternative waveforms. A system-on-chip comprising the sensor interface, reconfigurable sound processor, and arbitrary-waveform neural stimulator is implemented in a 0.18[mu]m high-voltage CMOS process to demonstrate the feasibility of this system. The sensor interface and sound processor consume just 12[mu]W of power, representing just 2% of the overall system power which is dominated by stimulation. As a result, the energy savings from using alternative stimulation waveforms transfer directly to the system.by Marcus Yip.Ph.D
    corecore