5 research outputs found

    Modeling of Photonic Devices and Photonic Integrated Circuits for Optical Interconnect and RF Photonic Front-End Applications

    Get PDF
    Photonic integrated circuits (PICs) offer compelling solutions for applications in many areas due to the sufficient functionality and excellent performance. Optical interconnects and radio frequency (RF) photonics are two areas in which PICs have potential to be widely used. Optical interconnect system efficiency is dependent on the ability to optimize the transceiver circuitry for low-power and high-bandwidth operation, motivating co-simulation environments with compact optical device simulation models. Compact models for vertical-cavity surface-emitting lasers (VCSELs) and silicon carrier-injection/depletion ring modulators which include both non-linear electrical and optical dynamics are presented, and excellent matching between co-simulated and measured optical eye diagrams is achieved. Advanced modulation schemes, such as four-level pulse-amplitude modulation (PAM4), are currently under consideration in both high-speed electrical and optical interconnect systems. How NRZ and PAM4 modulation impacts the energy efficiency of an optical link architecture based on silicon photonic microring resonator modulators and drop filters is analyzed. Two ring modulator device structures are proposed for PAM4 modulation, including a single-segment device driven with a multi-level PAM4 transmitter and a two-segment device driven by two simple NRZ (MSB/LSB) transmitters. Modeling results show that the PAM4 architectures achieve superior energy efficiency at higher data rates due to the relaxed circuit bandwidth. While RF photonics offer the promise of chip-scale opto-electrical systems with high levels of functionality, in order to avoid long and unsuccessful design cycles, efficient models that allow for co-simulation are necessary. In order to address this, an optical element modeling framework is proposed based on Verilog-A which allows for the co-simulation of optical elements with transistor-level circuits in a Cadence design environment. Three components in the RF photonic system, Mach Zehnder (MZ) modulators, 4th order all pass filter (APF)-based optical filters, and jammer-suppression notch filters are presented to demonstrate the capability of efficient system design in co-simulation environments

    Reinventing Integrated Photonic Devices and Circuits for High Performance Communication and Computing Applications

    Get PDF
    The long-standing technological pillars for computing systems evolution, namely Moore\u27s law and Von Neumann architecture, are breaking down under the pressure of meeting the capacity and energy efficiency demands of computing and communication architectures that are designed to process modern data-centric applications related to Artificial Intelligence (AI), Big Data, and Internet-of-Things (IoT). In response, both industry and academia have turned to \u27more-than-Moore\u27 technologies for realizing hardware architectures for communication and computing. Fortunately, Silicon Photonics (SiPh) has emerged as one highly promising ‘more-than-Moore’ technology. Recent progress has enabled SiPh-based interconnects to outperform traditional electrical interconnects, offering advantages like high bandwidth density, near-light speed data transfer, distance-independent bitrate, and low energy consumption. Furthermore, SiPh-based electro-optic (E-O) computing circuits have exhibited up to two orders of magnitude improvements in performance and energy efficiency compared to their electronic counterparts. Thus, SiPh stands out as a compelling solution for creating high-performance and energy-efficient hardware for communication and computing applications. Despite their advantages, SiPh-based interconnects face various design challenges that hamper their reliability, scalability, performance, and energy efficiency. These include limited optical power budget (OPB), high static power dissipation, crosstalk noise, fabrication and on-chip temperature variations, and limited spectral bandwidth for multiplexing. Similarly, SiPh-based E-O computing circuits also face several challenges. Firstly, the E-O circuits for simple logic functions lack the all-electrical input handling, raising hardware area and complexity. Secondly, the E-O arithmetic circuits occupy vast areas (at least 100x) while hardly achieving more than 60% hardware utilization, versus CMOS implementations, leading to high idle times, and non-amortizable area and static power overheads. Thirdly, the high area overhead of E-O circuits hinders them from achieving high spatial parallelism on-chip. This is because the high area overhead limits the count of E-O circuits that can be implemented on a reticle-size limited chip. My research offers significant contributions to address the aforementioned challenges. For SiPh-based interconnects, my contributions focus on enhancing OPB by mitigating crosstalk noise, addressing the optical non-linearity-related issues through the development of Silicon-on-Sapphire-based photonic interconnects, exploring multi-level signaling, and evaluating various device-level design pathways. This enables the design of high throughput (\u3e1Tbps) and energy-efficient (\u3c1pJ/bit) SiPh interconnects. In the context of SiPh-based E-O circuits, my contributions include the design of a microring-based polymorphic E-O logic gate, a hybrid time-amplitude analog optical modulator, and an indium tin oxide-based silicon nitride microring modulator and a weight bank for neural network computations. These designs significantly reduce the area overhead of current E-O computing circuits while enhancing the energy-efficiency, and hardware utilization

    Survey of Photonic and Plasmonic Interconnect Technologies for Intra-Datacenter and High-Performance Computing Communications

    Get PDF
    Large scale data centers (DC) and high performance computing (HPC) systems require more and more computing power at higher energy efficiency. They are already consuming megawatts of power, and a linear extrapolation of trends reveals that they may eventually lead to unrealistic power consumption scenarios in order to satisfy future requirements (e.g., Exascale computing). Conventional complementary metal oxide semiconductor (CMOS)-based electronic interconnects are not expected to keep up with the envisioned future board-to-board and chip-to-chip (within multi-chip-modules) interconnect requirements because of bandwidth-density and power-consumption limitations. However, low-power and high-speed optics-based interconnects are emerging as alternatives for DC and HPC communications; they offer unique opportunities for continued energy-efficiency and bandwidth-density improvements, although cost is a challenge at the shortest length scales. Plasmonics-based interconnects on the other hand, due to their extremely small size, offer another interesting solution for further scaling operational speed and energy efficiency. At the device-level, CMOS compatibility is also an important issue, since ultimately photonics or plasmonics will have to be co-integrated with electronics. In this paper, we survey the available literature and compare the aforementioned interconnect technologies, with respect to their suitability for high-speed and energy-efficient on-chip and offchip communications. This paper refers to relatively short links with potential applications in the following interconnect distance hierarchy: local group of racks, board to board, module to module, chip to chip, and on chip connections. We compare different interconnect device modules, including low-energy output devices (such as lasers, modulators, and LEDs), photodetectors, passive devices (i.e., waveguides and couplers) and electrical circuitry (such as laserdiode drivers, modulator drivers, transimpedance, and limiting amplifiers). We show that photonic technologies have the potential to meet the requirements for selected HPC and DC applications in a shorter term. We also present that plasmonic interconnect modules could offer ultra-compact active areas, leading to high integration bandwidth densities, and low device capacitances allowing for ultra-high bandwidth operation that would satisfy the application requirements further into the future
    corecore