2,044 research outputs found

    Note on the Irreducible Triangulations of the Klein Bottle

    Full text link
    We give the complete list of the 29 irreducible triangulations of the Klein bottle. We show how the construction of Lawrencenko and Negami, which listed only 25 such irreducible triangulations, can be modified at two points to produce the 4 additional irreducible triangulations of the Klein bottle.Comment: 10 pages, 8 figures, submitted to Journal of Combinatorial Theory, Series B. Section 3 expande

    Chromatic Numbers of Simplicial Manifolds

    Full text link
    Higher chromatic numbers χs\chi_s of simplicial complexes naturally generalize the chromatic number χ1\chi_1 of a graph. In any fixed dimension dd, the ss-chromatic number χs\chi_s of dd-complexes can become arbitrarily large for s≤⌈d/2⌉s\leq\lceil d/2\rceil [6,18]. In contrast, χd+1=1\chi_{d+1}=1, and only little is known on χs\chi_s for ⌈d/2⌉<s≤d\lceil d/2\rceil<s\leq d. A particular class of dd-complexes are triangulations of dd-manifolds. As a consequence of the Map Color Theorem for surfaces [29], the 2-chromatic number of any fixed surface is finite. However, by combining results from the literature, we will see that χ2\chi_2 for surfaces becomes arbitrarily large with growing genus. The proof for this is via Steiner triple systems and is non-constructive. In particular, up to now, no explicit triangulations of surfaces with high χ2\chi_2 were known. We show that orientable surfaces of genus at least 20 and non-orientable surfaces of genus at least 26 have a 2-chromatic number of at least 4. Via a projective Steiner triple systems, we construct an explicit triangulation of a non-orientable surface of genus 2542 and with face vector f=(127,8001,5334)f=(127,8001,5334) that has 2-chromatic number 5 or 6. We also give orientable examples with 2-chromatic numbers 5 and 6. For 3-dimensional manifolds, an iterated moment curve construction [18] along with embedding results [6] can be used to produce triangulations with arbitrarily large 2-chromatic number, but of tremendous size. Via a topological version of the geometric construction of [18], we obtain a rather small triangulation of the 3-dimensional sphere S3S^3 with face vector f=(167,1579,2824,1412)f=(167,1579,2824,1412) and 2-chromatic number 5.Comment: 22 pages, 11 figures, revised presentatio

    Lattice Topological Field Theory on Non-Orientable Surfaces

    Full text link
    The lattice definition of the two-dimensional topological quantum field theory [Fukuma, {\em et al}, Commun.~Math.~Phys.\ {\bf 161}, 157 (1994)] is generalized to arbitrary (not necessarily orientable) compact surfaces. It is shown that there is a one-to-one correspondence between real associative ∗*-algebras and the topological state sum invariants defined on such surfaces. The partition and nn-point functions on all two-dimensional surfaces (connected sums of the Klein bottle or projective plane and gg-tori) are defined and computed for arbitrary ∗*-algebras in general, and for the the group ring A=R[G]A=\R[G] of discrete groups GG, in particular.Comment: Corrected Latex file, 39 pages, 28 figures available upon reques

    Some Triangulated Surfaces without Balanced Splitting

    Full text link
    Let G be the graph of a triangulated surface Σ\Sigma of genus g≥2g\geq 2. A cycle of G is splitting if it cuts Σ\Sigma into two components, neither of which is homeomorphic to a disk. A splitting cycle has type k if the corresponding components have genera k and g-k. It was conjectured that G contains a splitting cycle (Barnette '1982). We confirm this conjecture for an infinite family of triangulations by complete graphs but give counter-examples to a stronger conjecture (Mohar and Thomassen '2001) claiming that G should contain splitting cycles of every possible type.Comment: 15 pages, 7 figure
    • …
    corecore