2,738 research outputs found

    Three-dimensional modeling of the human jaw/teeth using optics and statistics.

    Get PDF
    Object modeling is a fundamental problem in engineering, involving talents from computer-aided design, computational geometry, computer vision and advanced manufacturing. The process of object modeling takes three stages: sensing, representation, and analysis. Various sensors may be used to capture information about objects; optical cameras and laser scanners are common with rigid objects, while X-ray, CT and MRI are common with biological organs. These sensors may provide a direct or an indirect inference about the object, requiring a geometric representation in the computer that is suitable for subsequent usage. Geometric representations that are compact, i.e., capture the main features of the objects with a minimal number of data points or vertices, fall into the domain of computational geometry. Once a compact object representation is in the computer, various analysis steps can be conducted, including recognition, coding, transmission, etc. The subject matter of this dissertation is object reconstruction from a sequence of optical images using shape from shading (SFS) and SFS with shape priors. The application domain is dentistry. Most of the SFS approaches focus on the computational part of the SFS problem, i.e. the numerical solution. As a result, the imaging model in most conventional SFS algorithms has been simplified under three simple, but restrictive assumptions: (1) the camera performs an orthographic projection of the scene, (2) the surface has a Lambertian reflectance and (3) the light source is a single point source at infinity. Unfortunately, such assumptions are no longer held in the case of reconstruction of real objects as intra-oral imaging environment for human teeth. In this work, we introduce a more realistic formulation of the SFS problem by considering the image formation components: the camera, the light source, and the surface reflectance. This dissertation proposes a non-Lambertian SFS algorithm under perspective projection which benefits from camera calibration parameters. The attenuation of illumination is taken account due to near-field imaging. The surface reflectance is modeled using the Oren-Nayar-Wolff model which accounts for the retro-reflection case. In this context, a new variational formulation is proposed that relates an evolving surface model with image information, taking into consideration that the image is taken by a perspective camera with known parameters. A new energy functional is formulated to incorporate brightness, smoothness and integrability constraints. In addition, to further improve the accuracy and practicality of the results, 3D shape priors are incorporated in the proposed SFS formulation. This strategy is motivated by the fact that humans rely on strong prior information about the 3D world around us in order to perceive 3D shape information. Such information is statistically extracted from training 3D models of the human teeth. The proposed SFS algorithms have been used in two different frameworks in this dissertation: a) holistic, which stitches a sequence of images in order to cover the entire jaw, and then apply the SFS, and b) piece-wise, which focuses on a specific tooth or a segment of the human jaw, and applies SFS using physical teeth illumination characteristics. To augment the visible portion, and in order to have the entire jaw reconstructed without the use of CT or MRI or even X-rays, prior information were added which gathered from a database of human jaws. This database has been constructed from an adult population with variations in teeth size, degradation and alignments. The database contains both shape and albedo information for the population. Using this database, a novel statistical shape from shading (SSFS) approach has been created. Extending the work on human teeth analysis, Finite Element Analysis (FEA) is adapted for analyzing and calculating stresses and strains of dental structures. Previous Finite Element (FE) studies used approximate 2D models. In this dissertation, an accurate three-dimensional CAD model is proposed. 3D stress and displacements of different teeth type are successfully carried out. A newly developed open-source finite element solver, Finite Elements for Biomechanics (FEBio), has been used. The limitations of the experimental and analytical approaches used for stress and displacement analysis are overcome by using FEA tool benefits such as dealing with complex geometry and complex loading conditions

    Passive method for 3D reconstruction of human jaw: theory and application.

    Get PDF
    Oral dental applications based on visual data pose various challenges. There are problems with lighting (effect of saliva, tooth dis-colorization, gum texture, and other sources of specularity) and motion (even inevitable slight motions of the upper/ lower jaw may lead to errors far beyond the desired tolerance of sub-millimeter accuracy). Nowadays, the dental CAM systems have become more compromised and accurate to obtain the geometric data of the jaw from the active sensor (laser scanner). However, they have not met the expectations and the needs of dental professionals in many ways. The probes in these systems are bulky { even their newer versions - and are hard to maneuver. It requires multiple scans to get full coverage of the oral cavity. In addition, the dominant drawback of these systems is the cost. Stereo-based 3D reconstruction provides the highest accuracy among vision systems of this type. However, the evaluation of it\u27s performance for both accuracy results and the number of 3D points that are reconstructed would be affected by the type of the application and the quality of the data that is been acquired from the object of interest. Therefore, in this study, the stereo-based 3D reconstruction will vi be evaluated for the dental application. The handpiece of sensors holder would reach to areas inside the oral cavity, the gap between the tooth in the upper jaw and the tooth in the lower jaw in these areas would be very small, in such the stereo algorithms would not be able to reconstruct the tooth in that areas because of the distance between the optical sensors and the object of interest \tooth as well as the configuration of optical sensors are contradicted the geometric constraint roles of the stereo-based 3D reconstruction. Therefore, the configuration of the optical sensors as well as the number of sensors in the hand piece of sensors holder will be determined based on the morphological of the teeth surfaces. In addition to the 3D reconstruction, the panoramic view of a complete arch of human teeth will be accomplished as an application of dental imaging. Due to the low rate of features on teeth surfaces, the normal tooth surface is extracted using shape from shading. The extracted surface normals impact many imprecise values because of the oral environment; hence an algorithm is being formulated to rectify these values and generate normal maps. The normal maps reveal the impacted geometric properties of the images inside an area, boundary, and shape. Furthermore, the unrestricted camera movement problem is investigated. The camera may be moved along the jaw curve with different angles and distances due to handshaking. To overcome this problem, each frame is tested after warping it, and only correct frames are used to generate the panoramic view. The proposed approach outperforms comparing to the state-of-art auto stitching method

    3D-reconstruction of human jaw from a single image : integration between statistical shape from shading and shape from shading.

    Get PDF
    Object modeling is a fundamental problem in engineering, involving talents from computer-aided design, computational geometry, computer vision and advanced manufacturing. The process of object modeling takes three stages: sensing, representation, and analysis. Various sensors may be used to capture information about objects; optical cam- eras and laser scanners are common with rigid objects, while X-ray, CT and MRI are common with biological organs. These sensors may provide a direct or indirect inference about the object, requiring a geometric representation in the computer that is suitable for subsequent usage. Geometric representations that are compact, i.e., capture the main features of the objects with minimal number of data points or vertices, fall into the domain of computational geometry. Once a compact object representation is in the computer, various analysis steps can be conducted, including recognition, coding, transmission, etc. The subject matter of this thesis is object reconstruction from a sequence of optical images. An approach to estimate the depth of the visible portion of the human teeth from intraoral cameras has been developed, extending the classical shape from shading (SFS) solution to non-Lambertian surfaces with known object illumination characteristics. To augment the visible portion, and in order to have the entire jaw reconstructed without the use of CT or MRI or even X-rays, additional information will be added to database of human jaws. This database has been constructed from an adult population with variations in teeth size, degradation and alignments. The database contains both shape and albedo information for the population. Using this database, a novel statistical shape from shading (SSFS) approach has been created. To obtain accurate result from shape from shading and statistical shape from shading, final step will be integrated two approaches (SFS,SSFS) by using Iterative Closest Point algorithm (ICP). Keywords: computer vision, shading, 3D shape reconstruction, shape from shading, statistical, shape from shading, Iterative Closest Point

    Simultaneous in vivo positron emission tomography and magnetic resonance imaging

    Get PDF
    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner

    Image-Guided Robotic Dental Implantation With Natural-Root-Formed Implants

    Get PDF
    Dental implantation is now recognized as the standard of the care for tooth replacement. Although many studies show high short term survival rates greater than 95%, long term studies (\u3e 5 years) have shown success rates as low as 41.9%. Reasons affecting the long term success rates might include surgical factors such as limited accuracy of implant placement, lack of spacing controls, and overheating during the placement. In this dissertation, a comprehensive solution for improving the outcome of current dental implantation is presented, which includes computer-aided preoperative planning for better visualization of patient-specific information and automated robotic site-preparation for superior placement and orientation accuracy. Surgical planning is generated using patient-specific three-dimensional (3D) models which are reconstructed from Cone-beam CT images. An innovative image-guided robotic site-preparation system for implants insertion is designed and implemented. The preoperative plan of the implant insertion is transferred into intra-operative operations of the robot using a two-step registration procedure with the help of a Coordinate Measurement Machine (CMM). The natural-root implants mimic the root structure of natural teeth and were proved by Finite Element Method (FEM) to provide superior stress distribution than current cylinder-shape implants. However, due to their complicated geometry, manual site-preparation for these implants cannot be accomplished. Our innovative image-guided robotic implantation system provides the possibility of using this advanced type of implant. Phantom experiments with patient-specific jaw models were performed to evaluate the accuracy of positioning and orientation. Fiducial Registration Error (FRE) values less than 0.20 mm and final Target Registration Error (TRE) values after the two-step registration of 0.36±0.13 mm (N=5) were achieved. Orientation error was 1.99±1.27° (N=14). Robotic milling of the natural-root implant shape with single- and double-root was also tested, and the results proved that their complicated volumes can be removed as designed by the robot. The milling time for single- and double-root shape was 177 s and 1522 s, respectively

    3D RECONSTRUCTION USING MULTI-VIEW IMAGING SYSTEM

    Get PDF
    This thesis presents a new system that reconstructs the 3D representation of dental casts. To maintain the integrity of the 3D representation, a standard model is built to cover the blind spots that the camera cannot reach. The standard model is obtained by scanning a real human mouth model with a laser scanner. Then the model is simplified by an algorithm which is based on iterative contraction of vertex pairs. The simplified standard model uses a local parametrization method to obtain the curvature information. The system uses a digital camera and a square tube mirror in front of the camera to capture multi-view images. The mirror is made of stainless steel in order to avoid double reflections. The reflected areas of the image are considered as images taken by the virtual cameras. Only one camera calibration is needed since the virtual cameras have the same intrinsic parameters as the real camera. Depth is computed by a simple and accurate geometry based method once the corresponding points are identified. Correspondences are selected using a feature point based stereo matching process, including fast normalized cross-correlation and simulated annealing

    A stabilized adaptive appearance changes model for 3D head tracking

    Get PDF
    A simple method is presented for 3D head pose estimation and tracking in monocular image sequences. A generic geometric model is used. The initialization consists of aligning the perspective projection of the geometric model with the subjects head in the initial image. After the initialization, the gray levels from the initial image are mapped onto the visible side of the head model to form a textured object. Only a limited number of points on the object is used allowing real-time performance even on low-end computers. The appearance changes caused by movement in the complex light conditions of a real scene present a big problem for fitting the textured model to the data from new images. Having in mind real human-computer interfaces we propose a simple adaptive appearance changes model that is updated by the measurements from the new images. To stabilize the model we constrain it to some neighborhood of the initial gray values. The neighborhood is defined using some simple heuristic
    corecore