13 research outputs found

    Approximation Algorithms for the Stochastic Lot-Sizing Problem with Order Lead Times

    Get PDF
    We develop new algorithmic approaches to compute provably near-optimal policies for multiperiod stochastic lot-sizing inventory models with positive lead times, general demand distributions, and dynamic forecast updates. The policies that are developed have worst-case performance guarantees of 3 and typically perform very close to optimal in extensive computational experiments. The newly proposed algorithms employ a novel randomized decision rule. We believe that these new algorithmic and performance analysis techniques could be used in designing provably near-optimal randomized algorithms for other stochastic inventory control models and more generally in other multistage stochastic control problems.National Science Foundation (U.S.) (Grant DMS-0732175)National Science Foundation (U.S.) (CAREER Award CMMI-0846554)United States. Air Force Office of Scientific Research (Award FA9550-08-1-0369)United States. Air Force Office of Scientific Research (Award FA9550-11-1-0150)Singapore-MIT AllianceSolomon Buchsbaum AT&T Research Fun

    Stochastic regret minimization for revenue management problems with nonstationary demands

    Full text link
    We study an admission control model in revenue management with nonstationary and correlated demands over a finite discrete time horizon. The arrival probabilities are updated by current available information, that is, past customer arrivals and some other exogenous information. We develop a regret‐based framework, which measures the difference in revenue between a clairvoyant optimal policy that has access to all realizations of randomness a priori and a given feasible policy which does not have access to this future information. This regret minimization framework better spells out the trade‐offs of each accept/reject decision. We proceed using the lens of approximation algorithms to devise a conceptually simple regret‐parity policy. We show the proposed policy achieves 2‐approximation of the optimal policy in terms of total regret for a two‐class problem, and then extend our results to a multiclass problem with a fairness constraint. Our goal in this article is to make progress toward understanding the marriage between stochastic regret minimization and approximation algorithms in the realm of revenue management and dynamic resource allocation. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 433–448, 2016Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135128/1/nav21704.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135128/2/nav21704_am.pd

    Service Level Constrained Inventory Systems

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151878/1/poms13060_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151878/2/poms13060.pd

    Stochastic Perishable Inventory Systems: Dual-Balancing and Look-Ahead Approaches

    Get PDF
    We study a single-item, multi-period, stochastic perishable inventory problem under both backlogging and lost-sales circumstances, with and without an order capacity constraint in each period. We first model the problem as a dynamic program and then develop two heuristics namely, Dual-Balancing (DB) and Look-Ahead (LA) policies, to approximate the optimal inventory level at the beginning of each period. To characterize the holding and backlog cost functions under the proposed polices, we introduce a truncated marginal holding cost for the marginal cost accounting scheme. Our numerical examples demonstrate that both DB and LA policies have a possible worst-case performance guarantee of two in perishable inventory systems under different assumptions, and the LA policy significantly outperforms the DB policy in most situations. We also analyze the target inventory level in each period (the inventory level at the beginning of each period) under different policies. We observe that the target inventory level under the LA policy is not larger than the optimal one in each period in systems without an order capacity constraint

    Provably near-optimal algorithms for multi-stage stochastic optimization models in operations management

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 157-165).Many if not most of the core problems studied in operations management fall into the category of multi-stage stochastic optimization models, whereby one considers multiple, often correlated decisions to optimize a particular objective function under uncertainty on the system evolution over the future horizon. Unfortunately, computing the optimal policies is usually computationally intractable due to curse of dimensionality. This thesis is focused on providing provably near-optimal and tractable policies for some of these challenging models arising in the context of inventory control, capacity planning and revenue management; specifically, on the design of approximation algorithms that admit worst-case performance guarantees. In the first chapter, we develop new algorithmic approaches to compute provably near-optimal policies for multi-period stochastic lot-sizing inventory models with positive lead times, general demand distributions and dynamic forecast updates. The proposed policies have worst-case performance guarantees of 3 and typically perform very close to optimal in extensive computational experiments. We also describe a 6-approximation algorithm for the counterpart model under uniform capacity constraints. In the second chapter, we study a class of revenue management problems in systems with reusable resources and advanced reservations. A simple control policy called the class selection policy (CSP) is proposed based on solving a knapsack-type linear program (LP). We show that the CSP and its variants perform provably near-optimal in the Halfin- Whitt regime. The analysis is based on modeling the problem as loss network systems with advanced reservations. In particular, asymptotic upper bounds on the blocking probabilities are derived. In the third chapter, we examine the problem of capacity planning in joint ventures to meet stochastic demand in a newsvendor-type setting. When resources are heterogeneous, there exists a unique revenue-sharing contract such that the corresponding Nash Bargaining Solution, the Strong Nash Equilibrium, and the system optimal solution coincide. The optimal scheme rewards every participant proportionally to her marginal cost. When resources are homogeneous, there does not exist a revenue-sharing scheme which induces the system optimum. Nonetheless, we propose provably good revenue-sharing contracts which suggests that the reward should be inversely proportional to the marginal cost of each participant.by Cong Shi.Ph.D
    corecore