240 research outputs found

    Ultra-low Power Circuits for Internet of Things (IOT)

    Full text link
    Miniaturized sensor nodes offer an unprecedented opportunity for the semiconductor industry which led to a rapid development of the application space: the Internet of Things (IoT). IoT is a global infrastructure that interconnects physical and virtual things which have the potential to dramatically improve people's daily lives. One of key aspect that makes IoT special is that the internet is expanding into places that has been ever reachable as device form factor continue to decreases. Extremely small sensors can be placed on plants, animals, humans, and geologic features, and connected to the Internet. Several challenges, however, exist that could possibly slow the development of IoT. In this thesis, several circuit techniques as well as system level optimizations to meet the challenging power/energy requirement for the IoT design space are described. First, a fully-integrated temperature sensor for battery-operated, ultra-low power microsystems is presented. Sensor operation is based on temperature independent/dependent current sources that are used with oscillators and counters to generate a digital temperature code. Second, an ultra-low power oscillator designed for wake-up timers in compact wireless sensors is presented. The proposed topology separates the continuous comparator from the oscillation path and activates it only for short period when it is required. As a result, both low power tracking and generation of precise wake-up signal is made possible. Third, an 8-bit sub-ranging SAR ADC for biomedical applications is discussed that takes an advantage of signal characteristics. ADC uses a moving window and stores the previous MSBs voltage value on a series capacitor to achieve energy saving compared to a conventional approach while maintaining its accuracy. Finally, an ultra-low power acoustic sensing and object recognition microsystem that uses frequency domain feature extraction and classification is presented. By introducing ultra-low 8-bit SAR-ADC with 50fF input capacitance, power consumption of the frontend amplifier has been reduced to single digit nW-level. Also, serialized discrete Fourier transform (DFT) feature extraction is proposed in a digital back-end, replacing a high-power/area-consuming conventional FFT.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137157/1/seojeong_1.pd

    A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS

    Get PDF
    In vivo recording of neural action-potential and local-field-potential signals requires the use of high-resolution penetrating probes. Several international initiatives to better understand the brain are driving technology efforts towards maximizing the number of recording sites while minimizing the neural probe dimensions. We designed and fabricated (0.13-μm SOI Al CMOS) a 384-channel configurable neural probe for large-scale in vivo recording of neural signals. Up to 966 selectable active electrodes were integrated along an implantable shank (70 μm wide, 10 mm long, 20 μm thick), achieving a crosstalk of −64.4 dB. The probe base (5 × 9 mm2) implements dual-band recording and a 1

    A 16-bit low-power microcontroller with monolithic MEMS-LC clocking

    Full text link

    A Low-Power DSP Architecture for a Fully Implantable Cochlear Implant System-on-a-Chip.

    Full text link
    The National Science Foundation Wireless Integrated Microsystems (WIMS) Engineering Research Center at the University of Michigan developed Systems-on-a-Chip to achieve biomedical implant and environmental monitoring functionality in low-milliwatt power consumption and 1-2 cm3 volume. The focus of this work is implantable electronics for cochlear implants (CIs), surgically implanted devices that utilize existing nerve connections between the brain and inner-ear in cases where degradation of the sensory hair cells in the cochlea has occurred. In the absence of functioning hair cells, a CI processes sound information and stimulates the nderlying nerve cells with currents from implanted electrodes, enabling the patient to understand speech. As the brain of the WIMS CI, the WIMS microcontroller unit (MCU) delivers the communication, signal processing, and storage capabilities required to satisfy the aggressive goals set forth. The 16-bit MCU implements a custom instruction set architecture focusing on power-efficient execution by providing separate data and address register windows, multi-word arithmetic, eight addressing modes, and interrupt and subroutine support. Along with 32KB of on-chip SRAM, a low-power 512-byte scratchpad memory is utilized by the WIMS custom compiler to obtain an average of 18% energy savings across benchmarks. A synthesizable dynamic frequency scaling circuit allows the chip to select a precision on-chip LC or ring oscillator, and perform clock scaling to minimize power dissipation; it provides glitch-free, software-controlled frequency shifting in 100ns, and dissipates only 480μW. A highly flexible and expandable 16-channel Continuous Interleaved Sampling Digital Signal Processor (DSP) is included as an MCU peripheral component. Modes are included to process data, stimulate through electrodes, and allow experimental stimulation or processing. The entire WIMS MCU occupies 9.18mm2 and consumes only 1.79mW from 1.2V in DSP mode. This is the lowest reported consumption for a cochlear DSP. Design methodologies were analyzed and a new top-down design flow is presented that encourages hardware and software co-design as well as cross-domain verification early in the design process. An O(n) technique for energy-per-instruction estimations both pre- and post-silicon is presented that achieves less than 4% error across benchmarks. This dissertation advances low-power system design while providing an improvement in hearing recovery devices.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91488/1/emarsman_1.pd

    A Low-Power Wireless Multichannel Microsystem for Reliable Neural Recording.

    Full text link
    This thesis reports on the development of a reliable, single-chip, multichannel wireless biotelemetry microsystem intended for extracellular neural recording from awake, mobile, and small animal models. The inherently conflicting requirements of low power and reliability are addressed in the proposed microsystem at architectural and circuit levels. Through employing the preliminary microsystems in various in-vivo experiments, the system requirements for reliable neural recording are identified and addressed at architectural level through the analytical tool: signal path co-optimization. The 2.85mm×3.84mm, mixed-signal ASIC integrates a low-noise front-end, programmable digital controller, an RF modulator, and an RF power amplifier (PA) at the ISM band of 433MHz on a single-chip; and is fabricated using a 0.5µm double-poly triple-metal n-well standard CMOS process. The proposed microsystem, incorporating the ASIC, is a 9-channel (8-neural, 1-audio) user programmable reliable wireless neural telemetry microsystem with a weight of 2.2g (including two 1.5V batteries) and size of 2.2×1.1×0.5cm3. The electrical characteristics of this microsystem are extensively characterized via benchtop tests. The transmitter consumes 5mW and has a measured total input referred voltage noise of 4.74µVrms, 6.47µVrms, and 8.27µVrms at transmission distances of 3m, 10m, and 20m, respectively. The measured inter-channel crosstalk is less than 3.5% and battery life is about an hour. To compare the wireless neural telemetry systems, a figure of merit (FoM) is defined as the reciprocal of the power spent on broadcasting one channel over one meter distance. The proposed microsystem’s FoM is an order of magnitude larger compared to all other research and commercial systems. The proposed biotelemetry system has been successfully used in two in-vivo neural recording experiments: i) from a freely roaming South-American cockroach, and ii) from an awake and mobile rat.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91542/1/aborna_1.pd

    Analog Front-End Circuits for Massive Parallel 3-D Neural Microsystems.

    Full text link
    Understanding dynamics of the brain has tremendously improved due to the progress in neural recording techniques over the past five decades. The number of simultaneously recorded channels has actually doubled every 7 years, which implies that a recording system with a few thousand channels should be available in the next two decades. Nonetheless, a leap in the number of simultaneous channels has remained an unmet need due to many limitations, especially in the front-end recording integrated circuits (IC). This research has focused on increasing the number of simultaneously recorded channels and providing modular design approaches to improve the integration and expansion of 3-D recording microsystems. Three analog front-ends (AFE) have been developed using extremely low-power and small-area circuit techniques on both the circuit and system levels. The three prototypes have investigated some critical circuit challenges in power, area, interface, and modularity. The first AFE (16-channels) has optimized energy efficiency using techniques such as moderate inversion, minimized asynchronous interface for data acquisition, power-scalable sampling operation, and a wide configuration range of gain and bandwidth. Circuits in this part were designed in a 0.25μm CMOS process using a 0.9-V single supply and feature a power consumption of 4μW/channel and an energy-area efficiency of 7.51x10^15 in units of J^-1Vrms^-1mm^-2. The second AFE (128-channels) provides the next level of scaling using dc-coupled analog compression techniques to reject the electrode offset and reduce the implementation area further. Signal processing techniques were also explored to transfer some computational power outside the brain. Circuits in this part were designed in a 180nm CMOS process using a 0.5-V single supply and feature a power consumption of 2.5μW/channel, and energy-area efficiency of 30.2x10^15 J^-1Vrms^-1mm^-2. The last AFE (128-channels) shows another leap in neural recording using monolithic integration of recording circuits on the shanks of neural probes. Monolithic integration may be the most effective approach to allow simultaneous recording of more than 1,024 channels. The probe and circuits in this part were designed in a 150 nm SOI CMOS process using a 0.5-V single supply and feature a power consumption of only 1.4μW/channel and energy-area efficiency of 36.4x10^15 J^-1Vrms^-1mm^-2.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/98070/1/ashmouny_1.pd

    Low-Noise Energy-Efficient Sensor Interface Circuits

    Full text link
    Today, the Internet of Things (IoT) refers to a concept of connecting any devices on network where environmental data around us is collected by sensors and shared across platforms. The IoT devices often have small form factors and limited battery capacity; they call for low-power, low-noise sensor interface circuits to achieve high resolution and long battery life. This dissertation focuses on CMOS sensor interface circuit techniques for a MEMS capacitive pressure sensor, thermopile array, and capacitive microphone. Ambient pressure is measured in the form of capacitance. This work propose two capacitance-to-digital converters (CDC): a dual-slope CDC employs an energy efficient charge subtraction and dual comparator scheme; an incremental zoom-in CDC largely reduces oversampling ratio by using 9b zoom-in SAR, significantly improving conversion energy. An infrared gesture recognition system-on-chip is then proposed. A hand emits infrared radiation, and it forms an image on a thermopile array. The signal is amplified by a low-noise instrumentation chopper amplifier, filtered by a low-power 30Hz LPF to remove out-band noise including the chopper frequency and its harmonics, and digitized by an ADC. Finally, a motion history image based DSP analyzes the waveform to detect specific hand gestures. Lastly, a microphone preamplifier represents one key challenge in enabling voice interfaces, which are expected to play a dominant role in future IoT devices. A newly proposed switched-bias preamplifier uses switched-MOSFET to reduce 1/f noise inherently.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137061/1/chaseoh_1.pd

    An Implantable Stimulator with Safety Sensors in Standard CMOS Process for Active Books

    Get PDF
    This paper presents a second-generation integrated circuit for the Active Books neural stimulation microsystem. It provides multi-channel stimulation with versatile control of stimulation profiles and reduced crosstalk from other stimulation channels. The new design features enhanced safety by monitoring the temperature and humidity inside the micropackage, and the peak electrode voltage at any stimulating electrode. The humidity sensor uses an interdigitated capacitor covered by a passivation layer and a polyimide covering. To boost sensitivity in the operating range of interest, the temperature sensor uses a temperature-insensitive current that is subtracted from a proportional-to-absolute-temperature current. A 3-b analog-todigital converter is used to record the peak electrode voltage. All sensor data is sent to an implanted central hub using bidirectional connection with error checking. Both the stimulation electronics and sensors are integrated on a 6.2 mm × 4 mm silicon die using XFAB's 0.6-μm CMOS high-voltage process. No post-processing steps are involved. The stimulator uses a fivewire cable to provide the power supply and bidirectional data signals. The chip operates from a 7.5-18 V power supply and can generate stimulation currents of 1 mA, 4 mA or 8 mA with a pulse duration of 2 μs-1.07 ms. The humidity sensor output varies linearly with relative humidity (RH) with a normalized sensitivity of 0.04%/%RH over the range of 20-90%RH. The temperature sensor has a nonlinearity of 0.4% over the range of 20-90 °C and a resolution of 0.12 °C. The stimulator is the first of its kind to include integrated temperature and humidity sensors. Index Terms-Active Books, humidity sensor, implant safety, integrated stimulator, temperature sensor, voltage sensor

    Doctor of Philosophy

    Get PDF
    dissertationSince the late 1950s, scientists have been working toward realizing implantable devices that would directly monitor or even control the human body's internal activities. Sophisticated microsystems are used to improve our understanding of internal biological processes in animals and humans. The diversity of biomedical research dictates that microsystems must be developed and customized specifically for each new application. For advanced long-term experiments, a custom designed system-on-chip (SoC) is usually necessary to meet desired specifications. Custom SoCs, however, are often prohibitively expensive, preventing many new ideas from being explored. In this work, we have identified a set of sensors that are frequently used in biomedical research and developed a single-chip integrated microsystem that offers the most commonly used sensor interfaces, high computational power, and which requires minimum external components to operate. Included peripherals can also drive chemical reactions by setting the appropriate voltages or currents across electrodes. The SoC is highly modular and well suited for prototyping in and ex vivo experimental devices. The system runs from a primary or secondary battery that can be recharged via two inductively coupled coils. The SoC includes a 16-bit microprocessor with 32 kB of on chip SRAM. The digital core consumes 350 μW at 10 MHz and is capable of running at frequencies up to 200 MHz. The integrated microsystem has been fabricated in a 65 nm CMOS technology and the silicon has been fully tested. Integrated peripherals include two sigma-delta analog-to-digital converters, two 10-bit digital-to-analog converters, and a sleep mode timer. The system also includes a wireless ultra-wideband (UWB) transmitter. The fullydigital transmitter implementation occupies 68 x 68 μm2 of silicon area, consumes 0.72 μW static power, and achieves an energy efficiency of 19 pJ/pulse at 200 MHz pulse repetition frequency. An investigation of the suitability of the UWB technology for neural recording systems is also presented. Experimental data capturing the UWB signal transmission through an animal head are presented and a statistical model for large-scale signal fading is developed

    Wireless Transceivers for Implantable Microsystems.

    Full text link
    In this thesis, we present the first-ever fully integrated mm3 low-power biomedical transceiver with 1 meter of range that is powered by a mm2 thin-film battery. The transceiver is targeted for biomedical implants where size and energy constraints dictated by application make design challenging. Despite all the previous work in RFID tags, form factor of such radios is incompatible with mm3 biomedical implants. The proposed transceiver bridges this gap by providing a compact low-power solution that can run off small thin-film batteries and can be stacked with other system components in a 3D fashion. On the sensor-to-external side, we proposed a novel FSK architecture based on dual-resonator LC oscillators to mitigate unwanted overlap of two FSK tones’ phase noise spectrum. Due to inherent complexity of such systems, fourth order dual-resonator oscillators can exhibit instable operation. We mathematically modeled the instability and derive design conditions for stable oscillations. Through simulation and measurements, validity of derived models was confirmed. Together with other low-power system blocks, the transmitter was successfully implanted in live mouse and in-vivo measurements were performed to confirm successful transmission of vital signals through organic tissue. The integrated transmitter achieved a bit-error-rate of 10-6 at 10cm with 4.7nJ/bit energy consumption. On the external-to-sensor link, we proposed a new protocol to lower receiver peak power, which is highly limited due to small size of mm3 microsystem battery. In the proposed protocol, sending same data multiple times drastically relaxes jitter requirement on the sensor side at the cost of increased power consumption on the external side without increasing peak power radiated by the external unit. The receiver also uses a dual-coil LNA to improve range by 22% with only 11% area overhead. An asynchronous controller manages protocol timing and limits total monitoring current to 43nA. The fabricated receiver consumes 1.6nJ/bit at 40kbps while positioned 1m away from a 2W source.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/102458/1/ghaed_1.pd
    • …
    corecore