2 research outputs found

    High-Performance, Energy-Efficient CMOS Arithmetic Circuits

    Get PDF
    In a modern microprocessor, datapath/arithmetic circuits have always been an important building block in delivering high-performance, energy-efficient computing, because arithmetic operations such as addition and binary number comparison are two of the most commonly used computing instructions. Besides the manufacturing CMOS process, the two most critical design considerations for arithmetic circuits are the logic style and micro-architecture. In this thesis, a constant-delay (CD) logic style is proposed targeting full-custom high-speed applications. The constant delay characteristic of this logic style (regardless of the logic type) makes it suitable for implementing complicated logic expressions such as addition. CD logic exhibits a unique characteristic where the output is pre-evaluated before the inputs from the preceding stage are ready. This feature enables a performance advantage over static and dynamic domino logic styles in a single cycle, multi-stage circuit block. Several design considerations including timing window width adjustment and clock distribution are discussed. Using a 65-nm general-purpose CMOS technology, the proposed logic style demonstrates an average speedup of 94% and 56% over static and dynamic domino logic, respectively, in five different logic gates. Simulation results of 8-bit ripple carry adders conclude that CD logic is 39% and 23% faster than the static and dynamic-based adders, respectively. CD logic also demonstrates 39% speedup and 64% (22%) energy-delay product reduction from static logic at 100% (10%) data activity in 32-bit carry lookahead adders. To confirm CD logic's potential, a 148 ps, single-cycle 64-bit adder with CD logic implemented in the critical path is fabricated in a 65-nm, 1-V CMOS process. A new 64-bit Ling adder micro-architecture, which utilizes both inversion and absorption properties to minimize the number of CD logic and the number of logic stage in the critical path, is also proposed. At 1-V supply, this adder's measured worst-case power and leakage power are 135 mW and 0.22 mW, respectively. A single-cycle 64-bit binary comparator utilizing a radix-2 tree structure is also proposed. This comparator architecture is specifically designed for static logic to achieve both low-power and high-performance operation, especially in low input data activity environments. At 65-nm technology with 25% (10%) data activity, the proposed design demonstrates 2.3x (3.5x) and 3.7x (5.8x) power and energy-delay product efficiency, respectively. This comparator is also 2.7x faster at iso-energy (80 fJ) or 3.3x more energy-efficient at iso-delay (200 ps) than existing designs. An improved comparator, where CD logic is utilized in the critical path to achieve high performance without sacrificing the overall energy efficiency, is also realized in a 65-nm 1-V CMOS process. At 1-V supply, the proposed comparator's measured delay is 167 ps, and has an average power and a leakage power of 2.34 mW and 0.06 mW, respectively. At 0.3-pJ iso-energy or 250-ps iso-delay budget, the proposed comparator with CD logic is 20% faster or 17% more energy-efficient compared to a comparator implemented with just the static logic

    Self-Heating Aware Design of ICs in Deep Sub-Micron FDSOI and Bulk Technologies

    Get PDF
    Bulk CMOS technologies left the semiconductor market to the novel device geometries such as FDSOI and FinFET below 30 nm, mainly due to their insufficient electrical characteristics arising from different physical limitations. These innovative solutions enabled the ongoing device scaling to continue. However, the threshold voltage and the power supply values did not shrink with the device sizes, which caused an excessive amount of heat generation in very small dimensions. With the high thermal resistivity materials used in FDSOI and FinFET, the generated heat cannot leave the device easily, which is not the case in bulk. With all of these, modern geometries brought a major problem, which is the self-heating. Due to self-heating effects (SHE), the temperature of a device rises significantly compared to its surroundings. Having very large local temperature brings important reliability issues. Moreover, the electrical behaviour of a device also changes dramatically when its temperature is very large. These facts bring the need of considering SHE and the temperature of each device separately. Nevertheless, in many of today's CAD tools, a single global temperature is applied to all of the devices. Even if some advanced simulation options are used, estimating the temperature of a device is not a simple task as it depends on many parameters. The focus of this thesis is to show the significance of SHE in the design of ICs and provide self-heating aware design guidelines. In order to achieve this, different circuit implementations are studied by considering the SHE. The study consists of two main parts, which are the reliability of the high-speed digital circuits and the performance of analog blocks where noise is critical. Moreover, detailed device-level electro-thermal simulations are performed to explain the self-heating phenomena more in detail and to perform a comparison between bulk and FDSOI. The digital part of the self-heating study is performed on two very high-speed full-custom 64-bit Kogge-Stone adders in 40 nm and 28 nm technologies. Thermal simulations are performed on these blocks to compare SHE in bulk and FDSOI geometries. The comparison of two implementations also provides the increasing significance of SHE with scaling. Extensive heating analyses are performed to find the most critical devices that are the primary heat generators. Design guidelines and solutions are proposed to flatten the temperature profiles in precharged and static logic implementations and to decrease the probability of electromigration. The analog study of the work focuses on the thermal noise performance of LNAs and SHE on the flicker noise. Since thermal noise of a device linearly depends on the temperature, it is directly affected by SHE. To show the amount of SHE on the noise figure, three common gate cascode LNAs operating at 2 GHz with different device lengths are implemented in 28 nm FDSOI. The measurements show that the self-heating effects are clearly observed on the noise figure and the performance of the blocks deviate importantly from the simulations. Moreover, the self-heating effects are significantly more in short channel devices due to their large heat density. Similar experiments are also performed on different test structures in FDSOI at lower frequencies to observe SHE on flicker noise. The experiments show that flicker noise degrades at larger temperatures and more in short channel implementations
    corecore