5 research outputs found

    On-chip signaling techniques for high-speed Serdes transceivers

    Get PDF
    The general goal of the VLSI technology is to produce very fast chips with very low power consumption. The technology scaling along with increasing the working frequency had been the perfect solution, which enabled the evolution of electronic devices in the 20th century. However, in deep sub-micron technologies, the on-chip power density limited the continuous increment in frequency, which led to another trend for designing higher performance chips without increasing the working speed. Parallelism was the optimum solution, and the VLSI manufacturers began the era of multi-core chips. These multi-core chips require a full inter-core network for the required communication. These on-chip links were conventionally parallel. However, due to reverse scaling in modern technologies, parallel signaling is becoming a burden due to the very large area of needed interconnects. Also, due to the very high power due to the tremendous number of repeaters, in addition to cross talk issues. As a solution, on-chip serial communication was suggested. It will solve all the previous issues, but it will require very high speed circuits to achieve the same data rates. This thesis presents two full SerDes transceiver designs for on-chip high speed serial communication. Both designs use long lossy on-chip differential interconnects with capacitive termination. The first design uses a 3-level self-timed signaling technique. This signaling technique is totally jitter-insensitive, since both of the data and clock are extracted at the receiver from the same signal. A new encoding and driving technique is designed to enable the transmitter to work at a frequency equal to the data rate, which is half of the frequency of the previous designs, along with achieving the same data rate. Also, this design generates the third voltage level without the need of an external supply. This design is very tolerant to any possible variations, such as PVT variations or the input clock\u27s duty cycle variations. This transceiver is prepared for tape-out in UMC 0.13μm CMOS technology in June 2014. The second design uses a new 3-level signaling technique; the proposed technique uses a frequency of only half the data rate, which totally relaxes the full transceiver design. The new technique is also self-timed enabling the extraction of both the data, and the clock from the same signal. New encoders and decoders are designed, and a new architecture for a 3-level inverter is presented. This transceiver achieves very high data rates. This new design is expected to be taped-out using the GF 65nm CMOS technology in August 2014

    High-speed, low cost test platform using FPGA technology

    Get PDF
    The object of this research is to develop a low-cost, adaptable testing platform for multi-GHz digital applications, with concentration on the test requirement of advanced devices. Since most advanced ATEs are very expensive, this equipment is not always available for testing cost-sensitive devices. The approach is to use recently-introduced advanced FPGAs for the core logic of the testing platform, thereby allowing for a low-cost, low power-consumption, high-performance, and adaptable test system. Furthermore to customize the testing system for specific applications, we implemented multiple extension testing modules base on this platform. With these extension modules, new functions can be added easily and the test system can be upgraded with specific features required for other testing purposes. The applications of this platform can help those digital devices to be delivered into market with shorter time, lower cost and help the development of the whole industry.Ph.D

    Systems with Massive Number of Antennas: Distributed Approaches

    Get PDF
    As 5G is entering maturity, the research interest has shifted towards 6G, and specially the new use cases that the future telecommunication infrastructure needs to support. These new use cases encompass much higher requirements, specifically: higher communication data-rates, larger number of users, higher accuracy in localization, possibility to wirelessly charge devices, among others.The radio access network (RAN) has already gone through an evolution on the path towards 5G. One of the main changes was a large increment of the number of antennas in the base-station. Some of them may even reach 100 elements, in what is commonly referred as Massive MIMO. New proposals for 6G RAN point in the direction of continuing this path of increasing the number of antennas, and locate them throughout a certain area of service. Different technologies have been proposed in this direction, such as: cell-free Massive MIMO, distributed MIMO, and large intelligent surface (LIS). In this thesis we focus on LIS, whose conducted theoretical studies promise the fulfillment of the aforementioned requirements.While the theoretical capabilities of LIS have been conveniently analyzed, little has been done in terms of implementing this type of systems. When the number of antennas grow to hundreds or thousands, there are numerous challenges that need to be solved for a successful implementation. The most critical challenges are the interconnection data-rate and the computational complexity.In the present thesis we introduce the implementation challenges, and show that centralized processing architectures are no longer adequate for this type of systems. We also present different distributed processing architectures and show the benefits of this type of schemes. This work aims at giving a system-design guideline that helps the system designer to make the right decisions when designing these type of systems. For that, we provide algorithms, performance analysis and comparisons, including first order evaluation of the interconnection data-rate, processing latency, memory and energy consumption. These numbers are based on models and available data in the literature. Exact values depend on the selected technology, and will be accurately determined after building and testing these type of systems.The thesis concentrates mostly on the topic of communication, with additional exploration of other areas, such as localization. In case of localization, we benefit from the high spatial resolution of a very-large array that provides very rich channel state information (CSI). A CSI-based fingerprinting via neural network technique is selected for this case with promising results. As the communication and localization services are based on the acquisition of CSI, we foresee a common system architecture capable of supporting both cases. Further work in this direction is recommended, with the possibility of including other applications such as sensing.The obtained results indicate that the implementation of these very-large array systems is feasible, but the challenges are numerous. The proposed solutions provide encouraging results that need to be verified with hardware implementations and real measurements

    A scalable packetised radio astronomy imager

    Get PDF
    Includes bibliographical referencesModern radio astronomy telescopes the world over require digital back-ends. The complexity of these systems depends on many site-specific factors, including the number of antennas, beams and frequency channels and the bandwidth to be processed. With the increasing popularity for ever larger interferometric arrays, the processing requirements for these back-ends have increased significantly. While the techniques for building these back-ends are well understood, every installation typically still takes many years to develop as the instruments use highly specialised, custom hardware in order to cope with the demanding engineering requirements. Modern technology has enabled reprogrammable FPGA-based processing boards, together with packet-based switching techniques, to perform all the digital signal processing requirements of a modern radio telescope array. The various instruments used by radio telescopes are functionally very different, but the component operations remain remarkably similar and many share core functionalities. Generic processing platforms are thus able to share signal processing libraries and can acquire different personalities to perform different functions simply by reprogramming them and rerouting the data appropriately. Furthermore, Ethernet-based packet-switched networks are highly flexible and scalable, enabling the same instrument design to be scaled to larger installations simply by adding additional processing nodes and larger network switches. The ability of a packetised network to transfer data to arbitrary processing nodes, along with these nodes' reconfigurability, allows for unrestrained partitioning of designs and resource allocation. This thesis describes the design and construction of the first working radio astronomy imaging instrument hosted on Ethernet-interconnected re- programmable FPGA hardware. I attempt to establish an optimal packetised architecture for the most popular instruments with particular attention to the core array functions of correlation and beamforming. Emphasis is placed on requirements for South Africa's MeerKAT array. A demonstration system is constructed and deployed on the KAT-7 array, MeerKAT's prototype. This research promises reduced instrument development time, lower costs, improved reliability and closer collaboration between telescope design teams

    Figure 2. New three levels encoding technique Figure 1. Block diagram of the proposed SerDes transceiver A 12Gbps All Digital Low Power SerDes Transceiver for On-Chip Networking

    No full text
    Abstract-In this paper, a new self-timed signaling technique for reliable low-power on-chip SerDes (Serialization and DeSerialization) links is presented. The transmitter serializes 8 parallel bits at 1.5GHz, and multiplexes the 12Gbps serial data stream with a 24GHz clock on a single line using three level signaling. This new signaling technique enables the receiver to recover the clock from the data with a simple phase detector circuitry. Moreover, this technique is insensitive to jitter accumulated during signal propagation or at the receiver input because the clock signal is extracted from the multiplexed data stream. Hence, timing errors in the received signal reflects in both the data and the extracted clock, and the data will be sampled correctly. The SerDes transceiver was implemented for a 3mm long lossy on-chip differential transmission line in 65nm TSMC CMOS technology. A primary advantage of building an all digital SerDes transceiver is the ease of scaling with technology, and the power and area reduction. The total power consumed in the Tx/Rx pair with the transmission line is 15.5mWatt, which is very small as compared to similar published signaling architectures
    corecore