4 research outputs found

    Design of a Magnetically Tunable Low Noise Amplifier in 0.13 um CMOS Technology

    Get PDF
    With legacy technologies present and approaching new wireless standards, the 1-10 GHz band of frequencies is quickly becoming saturated. Although saturated, the frequency bands are being utilized inefficiently. Cognitive radio, an intelligent wireless communication system, is the novel solution for the efficient utilization of the frequency bands. Front-end receivers for cognitive radio will need the capability to receive and process multiple frequency bands and a key component is the low noise amplifier (LNA). A tunable LNA using a new magnetically tuned input impedance matching network is presented. The LNA has been designed and simulated in a commercially available 0.13 μm CMOS technology and is capable of tuning from 3.2 GHz to 4.6 GHz as S11 \u3c -10 dB. Within this bandwidth the maximum power gain is 16.2 dB, the maximum noise figure is 7.5 dB, and the minimum IIP3 is -6.4 dBm. The total power consumption of the LNA (neglecting the buffer required to drive the 50 Ω test equipment) is 50 mW. This tunable LNA introduces a new magnetically tunable matching technique and tuning scheme capable of continuous frequency variation for LNAs. It is expected that this technique could be expanded to realize LNAs with a tunable, narrow-band response that can cover the entire 1-10 GHz band of frequencies. The presented tunable LNA has demonstrated the capability to cover and process multiple frequencies and can be used for reconfigurable systems. A tunable LNA design is the first step in an effort to realize a fully reconfigurable front-end radio frequency (RF) receiver for future cognitive radio applications

    CMOS Front-End Circuits in 45-nm SOI Suitable for Modular Phased-Array 60-GHz Radios

    Get PDF
    Next Fifth-generation (5G) wireless technologies enabling ultra-wideband spectrum availability and increased system capacity can achieve multi-gigabit/s (Gbps) data rates suitable for ultra-high-speed internet access around the 60-GHz band (i.e., Wi-Gig Technology). This mm-wave band is unlicensed and experiences high propagation power losses. Therefore, it is suitable for short-range communications and requires antenna arrays to satisfy the link budget requirements. Half-duplex reconfigurable phased-array transceivers require wideband, low-cost, highly integrated front-end circuits such as bilateral RF switches, low-noise/power amplifiers, passive RF splitters/combiners, and phase shifters implemented in deep sub-micron CMOS. In this dissertation, analysis, design, and verification of essential CMOS front-end components are covered and fabricated in GlobalFoundries 45-nm RF-SOI CMOS technology. Firstly, a fully-differential, single-pole, single-throw (SPST) switch capable of high isolation in broadband CMOS transceivers is described. The SPST switch realizes better than 50-dB isolation (ISO) across DC to 43 GHz while maintaining an insertion loss (IL) below 3 dB. Measured RF input power for 1-dB compression (IP1dB) of the IL is +19.6 dBm, and the measured input third-order intercept point (IIP3) is +30.4 dBm (both assuming differential inputs at 20 GHz). The prototype has an active area of 0.0058 mm^2. Secondly, a single-pole double-throw (SPDT) switch is implemented using the SPST concept by using a balun to convert the shared differential path to a single-ended antenna port. The SPDT simulations predict less than 3.5-dB IL and greater than 40-dB ISO across 55 to 65 GHz frequency band. An IP1dB of +21 dBm is expected from large-signal simulations. The prototype has an active area of 0.117 mm^2. Thirdly, a fully-differential switched-LC topology adopted with slow-wave artificial transmission line concept, and phase inversion network is described for a 360-degree phase shift range with 11.25-degree phase resolution. The average IL of the complete phase shifter is 5.3 dB with less than 1-dB rms IL error. Furthermore, the IP1dB of the phase shifter is +16 dBm. The prototype has an active area of 0.245 mm^2. Lastly, a fully-differential, 2-stage, common-source (CS) low-noise amplifier (LNA) is developed with wideband matching from 57.8 GHz to 67 GHz, a maximum simulated forward power gain of 20.8 dB, and a minimum noise figure of 3.07 dB. The LNA consumes 21 mW and predicts an OP1dB of 4.8 dBm from the 1-V supply. The LNA consumes an active area of 0.028 mm^2

    CMOS radio frequency circuits for short-range direct-conversion receivers

    Get PDF
    The research described in this thesis is focused on the design and implementation of radio frequency (RF) circuits for direct-conversion receivers. The main interest is in RF front-end circuits, which contain low-noise amplifiers, downconversion mixers, and quadrature local oscillator signal generation circuits. Three RF front-end circuits were fabricated in a short-channel CMOS process and experimental results are presented. A low-noise amplifier (LNA) is typically the first amplifying block in the receiver. A large number of LNAs have been reported in the literature. In this thesis, wideband LNA structures are of particular interest. The most common and relevant LNA topologies are analyzed in detail in the frequency domain and theoretical limitations are found. New LNA structures are presented and a comparison to the ones found in the literature is made. In this work, LNAs are implemented with downconversion mixers as RF front-ends. The designed mixers are based on the commonly used Gilbert cell. Different mixer implementation alternatives are presented and the design of the interface between the LNA and the downconversion mixer is discussed. In this work, the quadrature local oscillator signal is generated either by using frequency dividers or polyphase filters (PPF). Different possibilities for implementing frequency dividers are briefly described. Polyphase filters were already introduced by the 1970s and integrated circuit (IC) realizations to generate quadrature signals have been published since the mid-1990s. Although several publications where the performance of the PPFs has been studied either by theoretical calculations or simulations can be found in the literature, none of them covers all the relevant design parameters. In this thesis, the theory behind the PPFs is developed such that all the relevant design parameters needed in the practical circuit design have been calculated and presented with closed-form equations whenever possible. Although the main focus was on twoand three-stage PPFs, which are the most common ones encountered in practical ICs, the presented calculation methods can be extended to analyze the performance of multistage PPFs as well. The main application targets of the circuits presented in this thesis are the short-range wireless sensor system and ultrawideband (UWB). Sensors are capable of monitoring temperature, pressure, humidity, or acceleration, for example. The amount of transferred data is typically small and therefore a modest bit rate, less than 1 Mbps, is adequate. The sensor system applied in this thesis operates at 2.4-GHz ISM band (Industrial, Scientific, and Medical). Since the sensors must be able to operate independently for several years, extremely low power consumption is required. In sensor radios, the receiver current consumption is dominated by the blocks and elements operating at the RF. Therefore, the target was to develop circuits that can offer satisfactory performance with a current consumption level that is small compared to other receivers targeted for common cellular systems. On the other hand, there is a growing need for applications that can offer an extremely high data rate. UWB is one example of such a system. At the moment, it can offer data rates of up to 480 Mbps. There is a frequency spectrum allocated for UWB systems between 3.1 and 10.6 GHz. The UWB band is further divided into several narrower band groups (BG), each occupying a bandwidth of approximately 1.6 GHz. In this work, a direct-conversion RF front-end is designed for a dual-band UWB receiver, which operates in band groups BG1 and BG3, i.e. at 3.1 – 4.8 GHz and 6.3 – 7.9 GHz frequency areas, respectively. Clearly, an extremely wide bandwidth combined with a high operational frequency poses challenges for circuit design. The operational bandwidths and the interfaces between the circuit blocks need to be optimized to cover the wanted frequency areas. In addition, the wideband functionality should be achieved without using a number of on-chip inductors in order to minimize the die area, and yet the power consumption should be kept as small as possible. The characteristics of the two main target applications are quite different from each other with regard to power consumption, bandwidth, and operational frequency requirements. A common factor for both is their short, i.e. less than 10 meters, range. Although the circuits presented in this thesis are targeted on the two main applications mentioned above, they can be utilized in other kind of wireless communication systems as well. The performance of three experimental circuits was verified with measurements and the results are presented in this work. Two of them have been a part of a whole receiver including baseband amplifiers and filters and analog-to-digital converters. Experimental circuits were fabricated in a 0.13-µm CMOS process. In addition, this thesis includes design examples where new circuit ideas and implementation possibilities are introduced by using 0.13-µm and 65-nm CMOS processes. Furthermore, part of the theory presented in this thesis is validated with design examples in which actual IC component models are used.Tässä väitöskirjassa esitetty tutkimus keskittyy suoramuunnosvastaanottimen radiotaajuudella (radio frequency, RF) toimivien piirien suunnitteluun ja toteuttamiseen. Työ keskittyy vähäkohinaiseen vahvistimeen (low-noise amplifier, LNA), alassekoittajaan ja kvadratuurisen paikallisoskillaattorisignaalin tuottavaan piiriin. Työssä toteutettiin kolme RF-etupäätä erittäin kapean viivanleveyden CMOS-prosessilla, ja niiden kokeelliset tulokset esitetään. Vähäkohinainen vahvistin on yleensä ensimmäinen vahvistava lohko vastaanottimessa. Useita erilaisia vähäkohinaisia vahvistimia on esitetty kirjallisuudessa. Tämän työn kohteena ovat eritoten laajakaistaiset LNA-rakenteet. Tässä työssä analysoidaan taajuustasossa yleisimmät ja oleellisimmat LNA-topologiat. Lisäksi uusia LNA-rakenteita on esitetty tässä työssä ja niitä on verrattu muihin kirjallisuudessa esitettyihin piireihin. Tässä työssä LNA:t on toteutettu yhdessä alassekoittimen kanssa muodostaen RF-etupään. Työssä suunnitellut alassekoittimet perustuvat yleisesti käytettyyn Gilbertin soluun. Erilaisia sekoittajan suunnitteluvaihtoehtoja ja LNA:n ja alassekoittimen välisen rajapinnan toteutustapoja on esitetty. Tässä työssä kvadratuurinen paikallisoskillaattorisignaali on muodostettu joko käyttämällä taajuusjakajia tai monivaihesuodattimia. Erilaisia taajuusjakajia ja niiden toteutustapoja käsitellään yleisellä tasolla. Monivaihesuodatinta, joka on alunperin kehitetty jo 1970-luvulla, on käytetty integroiduissa piireissä kvadratuurisignaalin tuottamiseen 1990-luvun puolivälistä lähtien. Kirjallisuudesta löytyy lukuisia artikkeleita, joissa monivaihesuodattimen toimintaa on käsitelty teoreettisesti laskien ja simuloinnein. Kuitenkaan kaikkia sen suunnitteluparametreja ei tähän mennessä ole käsitelty. Tässä työssä monivaihesuodattimen teoriaa on kehitetty edelleen siten, että käytännön piirisuunnittelussa tarvittavat oleelliset parametrit on analysoitu ja suunnitteluyhtälöt on esitetty suljetussa muodossa aina kuin mahdollista. Vaikka työssä on keskitytty yleisimpiin eli kaksi- ja kolmiasteisiin monivaihesuodattimiin, on työssä esitetty menetelmät, joilla laskentaa voidaan jatkaa aina useampiasteisiin suodattimiin asti. Työssä esiteltyjen piirien pääkohteina ovat lyhyen kantaman sensoriradio ja erittäin laajakaistainen järjestelmä (ultrawideband, UWB). Sensoreilla voidaan tarkkailla esimerkiksi ympäristön lämpötilaa, kosteutta, painetta tai kiihtyvyyttä. Siirrettävän tiedon määrä on tyypillisesti vähäistä, jolloin pieni tiedonsiirtonopeus, alle 1 megabitti sekunnissa, on välttävä. Tämän työn kohteena oleva sensoriradiojärjestelmä toimii kapealla kaistalla 2,4 gigahertsin ISM-taajuusalueella (Industrial, Scientific, and Medical). Koska sensorien tavoitteena on toimia itsenäisesti ilman pariston vaihtoa useita vuosia, täytyy niiden kuluttaman virran olla erittäin vähäistä. Sensoriradiossa vastaanottimen tehonkulutuksen kannalta määräävässä asemassa ovat radiotaajuudella toimivat piirit. Tavoitteena oli tutkia ja kehittää piirirakenteita, joilla päästään tyydyttävään suorituskykyyn tehonkulutuksella, joka on vähäinen verrattuna muiden tavallisten langattomien tiedonsiirtojärjestelmien radiovastaanottimiin. Toisaalta viime aikoina on kasvanut tarvetta myös järjestelmille, jotka kykenevät tarjoamaan erittäin korkean tiedonsiirtonopeuden. UWB on esimerkki tällaisesta järjestelmästä. Tällä hetkellä se tarjoaa tiedonsiirtonopeuksia aina 480 megabittiin sekunnissa. UWB:lle on varattu taajuusalueita 3,1 ja 10,6 gigahertsin taajuuksien välillä. Kyseinen kaista on edelleen jaettu pienempiin taajuusryhmiin (band group, BG), joiden kaistanleveys on noin 1,6 gigahertsiä. Tässä työssä on toteutettu RF-etupää radiovastaanottimeen, joka pystyy toimimaan BG1:llä ja BG3:lla eli taajuusalueilla 3,1 - 4,7 GHz ja 6,3 - 7,9 GHz. Erittäin suuri kaistanleveys yhdistettynä korkeaan toimintataajuuteen tekee radiotaajuuspiirien suunnittelusta haasteellista. Piirirakenteiden toimintakaistat ja piirien väliset rajapinnat tulee optimoida riittävän laajoiksi käyttämättä kuitenkaan liian montaa piille integroitua kelaa piirin pinta-alan minimoimiseksi, ja lisäksi piirit tulisi toteuttaa mahdollisimman alhaisella tehonkulutuksella. Työssä esiteltyjen piirien kaksi pääkohdetta ovat hyvin erityyppisiä, mitä tulee tehonkulutus-, kaistanleveys- ja toimintataajuusvaatimuksiin. Yhteistä molemmille on lyhyt, alle 10 metrin kantama. Vaikka tässä työssä esitellyt piirit onkin kohdennettu kahteen pääsovelluskohteeseen, voidaan esitettyjä piirejä käyttää myös muiden tiedonsiirtojärjestelmien piirien suunnitteluun. Tässä työssä esitetään mittaustuloksineen yhteensä kolme kokeellista piiriä yllämainittuihin järjestelmiin. Kaksi ensimmäistä kokeellista piiriä muodostaa kokonaisen radiovastaanottimen yhdessä analogisten kantataajuusosien ja analogia-digitaali-muuntimien kanssa. Esitetyt kokeelliset piirit on toteutettu käyttäen 0,13 µm:n viivanleveyden CMOS-tekniikkaa. Näiden lisäksi työ pitää sisällään piirisuunnitteluesimerkkejä, joissa esitetään ideoita ja mahdollisuuksia käyttäen 0,13 µm:n ja 65 nm:n viivanleveyden omaavia CMOS-tekniikoita. Lisäksi piirisuunnitteluesimerkein havainnollistetaan työssä esitetyn teorian paikkansapitävyyttä käyttämällä oikeita komponenttimalleja.reviewe
    corecore