2,093 research outputs found

    Local likelihood estimation of complex tail dependence structures, applied to U.S. precipitation extremes

    Get PDF
    To disentangle the complex non-stationary dependence structure of precipitation extremes over the entire contiguous U.S., we propose a flexible local approach based on factor copula models. Our sub-asymptotic spatial modeling framework yields non-trivial tail dependence structures, with a weakening dependence strength as events become more extreme, a feature commonly observed with precipitation data but not accounted for in classical asymptotic extreme-value models. To estimate the local extremal behavior, we fit the proposed model in small regional neighborhoods to high threshold exceedances, under the assumption of local stationarity, which allows us to gain in flexibility. Adopting a local censored likelihood approach, inference is made on a fine spatial grid, and local estimation is performed by taking advantage of distributed computing resources and the embarrassingly parallel nature of this estimation procedure. The local model is efficiently fitted at all grid points, and uncertainty is measured using a block bootstrap procedure. An extensive simulation study shows that our approach can adequately capture complex, non-stationary dependencies, while our study of U.S. winter precipitation data reveals interesting differences in local tail structures over space, which has important implications on regional risk assessment of extreme precipitation events

    A multivariate piecing-together approach with an application to operational loss data

    Full text link
    The univariate piecing-together approach (PT) fits a univariate generalized Pareto distribution (GPD) to the upper tail of a given distribution function in a continuous manner. We propose a multivariate extension. First it is shown that an arbitrary copula is in the domain of attraction of a multivariate extreme value distribution if and only if its upper tail can be approximated by the upper tail of a multivariate GPD with uniform margins. The multivariate PT then consists of two steps: The upper tail of a given copula CC is cut off and substituted by a multivariate GPD copula in a continuous manner. The result is again a copula. The other step consists of the transformation of each margin of this new copula by a given univariate distribution function. This provides, altogether, a multivariate distribution function with prescribed margins whose copula coincides in its central part with CC and in its upper tail with a GPD copula. When applied to data, this approach also enables the evaluation of a wide range of rational scenarios for the upper tail of the underlying distribution function in the multivariate case. We apply this approach to operational loss data in order to evaluate the range of operational risk.Comment: Published in at http://dx.doi.org/10.3150/10-BEJ343 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
    • …
    corecore