269 research outputs found

    Backhaul For Low-Altitude UAVs in Urban Environments

    Full text link
    Unmanned Aerial Vehicles (UAVs) acting as access points in cellular networks require wireless backhauls to the core network. In this paper we employ stochastic geometry to carry out an analysis of the UAV backhaul performance that can be achieved with a network of dedicated ground stations. We provide analytical expressions for the probability of successfully establishing a backhaul and the expected data rate over the backhaul link, given either an LTE or a millimeter-wave backhaul. We demonstrate that increasing the density of the ground station network gives diminishing returns on the performance of the UAV backhaul, and that for an LTE backhaul the ground stations can benefit from being colocated with an existing base station network

    Performance Evaluation of UAV-enabled Cellular Networks with Battery-limited Drones

    Get PDF
    Unmanned aerial vehicles (UAVs) can be used as flying base stations (BSs) to offload Macro-BSs in hotspots. However, due to the limited battery on-board, UAVs can typically stay in operation for less than 1.5 hours. Afterward, the UAV has to fly back to a dedicated charging station that recharges/replaces the UAV's battery. In this paper, we study the performance of a UAV-enabled cellular network while capturing the influence of the spatial distribution of the charging stations. In particular, we use tools from stochastic geometry to derive the coverage probability of a UAV-enabled cellular network as a function of the battery size, the density of the charging stations, and the time required for recharging/replacing the battery

    Coverage analysis of Tethered UAV-assisted Large Scale Cellular Networks

    Full text link
    One of the major challenges slowing down the use of unmanned aerial vehicles (UAVs) as aerial base stations (ABSs) is the limited on-board power supply which reduces the UAV's flight time. Using a tether to provide UAVs with power can be considered a reasonable compromise that will enhance the flight time while limiting the UAV's mobility. In this work, we propose a system where ABSs are deployed at the centers of user hotspots to offload the traffic and assist terrestrial base stations (TBSs). Firstly, given the location of the ground station in the user hotspot (user cluster) and the users spatial distribution, we compute the optimal inclination angle and length of the tether. Using these results, we compute the densities of the tethered UAVs deployed at different altitudes, which enables tractable analysis of the interference in the considered setup. Next, using tools from stochastic geometry and an approach of dividing user clusters into finite frames, we analyze the coverage probability as a function of the maximum tether length, the density of accessible rooftops for UAV ground station deployment, and the density of clusters. We verify our findings using Monte-Carlo simulations and draw multiple useful insights. For instance, we show that it is actually better to deploy UAVs at a fraction of the clusters, not all of them as it is usually assumed in literature

    On the Influence of Charging Stations Spatial Distribution on Aerial Wireless Networks

    Get PDF
    Using drones for cellular coverage enhancement is a recent technology that has shown a great potential in various practical scenarios. However, one of the main challenges that limits the performance of drone-enabled wireless networks is the limited flight time. In particular, due to the limited on-board battery size, the drone needs to frequently interrupt its operation and fly back to a charging station to recharge/replace its battery. In addition, the charging station might be responsible to recharge multiple drones. Given that the charging station has limited capacity, it can only serve a finite number of drones simultaneously. Hence, in order to accurately capture the influence of the battery limitation on the performance, it is required to analyze the dynamics of the time spent by the drones at the charging stations. In this paper, we use tools from queuing theory and stochastic geometry to study the influence of each of the charging stations limited capacity and spatial density on the performance of a drone-enabled wireless network

    Drone Mobile Networks: Performance Analysis Under 3D Tractable Mobility Models

    Get PDF
    Reliable wireless communication networks are a significant but challenging mission for post-disaster areas and hotspots in the era of information. However, with the maturity of unmanned aerial vehicle (UAV) technology, drone mobile networks have attracted considerable attention as a prominent solution for facilitating critical communications. This paper provides a system-level analysis for drone mobile networks on a finite three-dimensional (3D) space. Our aim is to explore the fundamental performance limits of drone mobile networks taking into account practical considerations. Most existing works on mobile drone networks use simplified mobility models (e.g., fixed height), but the movement of the drones in practice is significantly more complicated, which leads to difficulties in analyzing the performance of the drone mobile networks. Hence, to tackle this problem, we propose a stochastic geometry-based framework with a number of different mobility models including a random Brownian motion approach. The proposed framework allows to circumvent the extremely complex reality model and obtain upper and lower performance bounds for drone networks in practice. Also, we explicitly consider certain constraints, such as the small-scale fading characteristics relying on line-of-sight (LOS) and non line-of-sight (NLOS) propagation, and multi-antenna operations. The validity of the mathematical findings is verified via Monte-Carlo (MC) simulations for various network settings. In addition, the results reveal some design guidelines and important trends for the practical deployment of drone networks

    Sustainable Wireless Services with UAV Swarms Tailored to Renewable Energy Sources

    Full text link
    Unmanned Aerial Vehicle (UAV) swarms are often required in off-grid scenarios, such as disaster-struck, war-torn or rural areas, where the UAVs have no access to the power grid and instead rely on renewable energy. Considering a main battery fed from two renewable sources, wind and solar, we scale such a system based on the financial budget, environmental characteristics, and seasonal variations. Interestingly, the source of energy is correlated with the energy expenditure of the UAVs, since strong winds cause UAV hovering to become increasingly energy-hungry. The aim is to maximize the cost efficiency of coverage at a particular location, which is a combinatorial optimization problem for dimensioning of the multivariate energy generation system under non-convex criteria. We have devised a customized algorithm by lowering the processing complexity and reducing the solution space through sampling. Evaluation is done with condensed real-world data on wind, solar energy, and traffic load per unit area, driven by vendor-provided prices. The implementation was tested in four locations, with varying wind or solar intensity. The best results were achieved in locations with mild wind presence and strong solar irradiation, while locations with strong winds and low solar intensity require higher Capital Expenditure (CAPEX) allocation.Comment: To be published in Transactions on Smart Gri
    • …
    corecore