604 research outputs found

    A Compositional Approach to Verifying Modular Robotic Systems

    Full text link
    Robotic systems used in safety-critical industrial situations often rely on modular software architectures, and increasingly include autonomous components. Verifying that these modular robotic systems behave as expected requires approaches that can cope with, and preferably take advantage of, this inherent modularity. This paper describes a compositional approach to specifying the nodes in robotic systems built using the Robotic Operating System (ROS), where each node is specified using First-Order Logic (FOL) assume-guarantee contracts that link the specification to the ROS implementation. We introduce inference rules that facilitate the composition of these node-level contracts to derive system-level properties. We also present a novel Domain-Specific Language, the ROS Contract Language, which captures a node's FOL specification and links this contract to its implementation. RCL contracts can be automatically translated, by our tool Vanda, into executable monitors; which we use to verify the contracts at runtime. We illustrate our approach through the specification and verification of an autonomous rover engaged in the remote inspection of a nuclear site, and finish with smaller examples that illustrate other useful features of our framework.Comment: Version submitted to RA

    Gesture Recognition and Control for Semi-Autonomous Robotic Assistant Surgeons

    Get PDF
    The next stage for robotics development is to introduce autonomy and cooperation with human agents in tasks that require high levels of precision and/or that exert considerable physical strain. To guarantee the highest possible safety standards, the best approach is to devise a deterministic automaton that performs identically for each operation. Clearly, such approach inevitably fails to adapt itself to changing environments or different human companions. In a surgical scenario, the highest variability happens for the timing of different actions performed within the same phases. This thesis explores the solutions adopted in pursuing automation in robotic minimally-invasive surgeries (R-MIS) and presents a novel cognitive control architecture that uses a multi-modal neural network trained on a cooperative task performed by human surgeons and produces an action segmentation that provides the required timing for actions while maintaining full phase execution control via a deterministic Supervisory Controller and full execution safety by a velocity-constrained Model-Predictive Controller

    Path Planning and Control of an Autonomous Quadrotor Testbed in a Cluttered Environment

    Get PDF
    A classical problem for robotic navigation is how to efficiently navigate from one point to another and what to do if obstacles are encountered along the way. Many map based path planning algorithms attempt to solve this problem, all with varying levels of optimality and complexity. This work shows a review of selected algorithms, and two of these are selected for simulation and testing using a quadrotor unmanned aerial vehicle (UAV) in a dynamic indoor environment which requires replanning capabilities. The Dynamic A* algorithm, or simply D*, and the Probabilistic Roadmap method (PRM) are used in a scenario designed to test their respective functionality and usefulness with the goal of determining the better algorithm for flight testing given a partially known or changing environment.;The development of the quadrotor platform hardware is discussed as well as the associated software and capabilities. Both algorithms are redesigned to fit this specific application and display their respective planned and replanned paths in an intuitive and comparable manner. Simulation is performed and an obstacle is added to the map during the quadrotor motion, requiring a replanned path. Results are compared for both computed path length and computational intensity. Flight testing is performed in an indoor environment, and during the flight an obstacle is inserted into the flight path, requiring detection and replanning. Results are compared for computed path length and intuitively analyzed to compare optimality and complexity

    Chapter RoCKIn@Home: Domestic Robots Challenge

    Get PDF
    Service robots performing complex tasks involving people in houses or public environments are becoming more and more common, and there is a huge interest from both the research and the industrial point of view. The RoCKIn@Home challenge has been designed to compare and evaluate different approaches and solutions to tasks related to the development of domestic and service robots. RoCKIn@Home competitions have been designed and executed according to the benchmarking methodology developed during the project and received very positive feedbacks from the participating teams. Tasks and functionality benchmarks are explained in detail

    RoCKIn@Home: Domestic Robots Challenge

    Get PDF
    Service robots performing complex tasks involving people in houses or public environments are becoming more and more common, and there is a huge interest from both the research and the industrial point of view. The RoCKIn@Home challenge has been designed to compare and evaluate different approaches and solutions to tasks related to the development of domestic and service robots. RoCKIn@Home competitions have been designed and executed according to the benchmarking methodology developed during the project and received very positive feedbacks from the participating teams. Tasks and functionality benchmarks are explained in detail

    Interoperability in a Heterogeneous Team of Search and Rescue Robots

    Get PDF
    Search and rescue missions are complex operations. A disaster scenario is generally unstructured, time‐varying and unpredictable. This poses several challenges for the successful deployment of unmanned technology. The variety of operational scenarios and tasks lead to the need for multiple robots of different types, domains and sizes. A priori planning of the optimal set of assets to be deployed and the definition of their mission objectives are generally not feasible as information only becomes available during mission. The ICARUS project responds to this challenge by developing a heterogeneous team composed by different and complementary robots, dynamically cooperating as an interoperable team. This chapter describes our approach to multi‐robot interoperability, understood as the ability of multiple robots to operate together, in synergy, enabling multiple teams to share data, intelligence and resources, which is the ultimate objective of ICARUS project. It also includes the analysis of the relevant standardization initiatives in multi‐robot multi‐domain systems, our implementation of an interoperability framework and several examples of multi‐robot cooperation of the ICARUS robots in realistic search and rescue missions

    A risk-aware architecture for resilient spacecraft operations

    Get PDF
    In this paper we discuss a resilient, risk-aware software architecture for onboard, real-time autonomous operations that is intended to robustly handle uncertainty in space-craft behavior within hazardous and unconstrained environments, without unnecessarily increasing complexity. This architecture, the Resilient Spacecraft Executive (RSE), serves three main functions: (1) adapting to component failures to allow graceful degradation, (2) accommodating environments, science observations, and spacecraft capabilities that are not fully known in advance, and (3) making risk-aware decisions without waiting for slow ground-based reactions. This RSE is made up of four main parts: deliberative, habitual, and reflexive layers, and a state estimator that interfaces with all three. We use a risk-aware goal-directed executive within the deliberative layer to perform risk-informed planning, to satisfy the mission goals (specified by mission control) within the specified priorities and constraints. Other state-of-the-art algorithms to be integrated into the RSE include correct-by-construction control synthesis and model-based estimation and diagnosis. We demonstrate the feasibility of the architecture in a simple implementation of the RSE for a simulated Mars rover scenario
    corecore