217 research outputs found

    The use of implicit evidence for relevance feedback in web retrieval

    Get PDF
    In this paper we report on the application of two contrasting types of relevance feedback for web retrieval. We compare two systems; one using explicit relevance feedback (where searchers explicitly have to mark documents relevant) and one using implicit relevance feedback (where the system endeavours to estimate relevance by mining the searcher's interaction). The feedback is used to update the display according to the user's interaction. Our research focuses on the degree to which implicit evidence of document relevance can be substituted for explicit evidence. We examine the two variations in terms of both user opinion and search effectiveness

    A Taxonomy of Information Retrieval Models and Tools

    Get PDF
    Information retrieval is attracting significant attention due to the exponential growth of the amount of information available in digital format. The proliferation of information retrieval objects, including algorithms, methods, technologies, and tools, makes it difficult to assess their capabilities and features and to understand the relationships that exist among them. In addition, the terminology is often confusing and misleading, as different terms are used to denote the same, or similar, tasks. This paper proposes a taxonomy of information retrieval models and tools and provides precise definitions for the key terms. The taxonomy consists of superimposing two views: a vertical taxonomy, that classifies IR models with respect to a set of basic features, and a horizontal taxonomy, which classifies IR systems and services with respect to the tasks they support. The aim is to provide a framework for classifying existing information retrieval models and tools and a solid point to assess future developments in the field

    Experiments on Incremental Clustering

    Get PDF
    Clustering of very large document databases is essential to reduce the spacehime complexity of information retrieval. The periodic updating of clusters is required due to the dynamic nature of databases. An algorithm for incremental clustering at discrete times is introduced, Its complexity and cost analysis and an investigation of the expected behavior of the algorithm are provided. Through empirical testing, it is shown that the algorithm is achieving its purpose in terms of being cost effective, generating statistically valid clusters that are compatible with those of reclustering, and providing effective information retrieval

    Collaborative Filtering-based Context-Aware Document-Clustering (CF-CAC) Technique

    Get PDF
    Document clustering is an intentional act that should reflect an individual\u27s preference with regard to the semantic coherency or relevant categorization of documents and should conform to the context of a target task under investigation. Thus, effective document clustering techniques need to take into account a user\u27s categorization context. In response, Yang & Wei (2007) propose a Context-Aware document Clustering (CAC) technique that takes into consideration a user\u27s categorization preference relevant to the context of a target task and subsequently generates a set of document clusters from this specific contextual perspective. However, the CAC technique encounters the problem of small-sized anchoring terms. To overcome this shortcoming, we extend the CAC technique and propose a Collaborative Filtering-based Context-Aware document-Clustering (CF-CAC) technique that considers not only a target user\u27s but also other users\u27 anchoring terms when approximating the categorization context of the target user. Our empirical evaluation results suggest that our proposed CF-CAC technique outperforms the CAC technique

    A Situational Implementation Method for Business Process Management Systems

    Get PDF
    For the integrated implementation of Business Process Management and supporting information systems many methods are available. Most of these methods, however, apply a one-size fits all approach and do not take into account the specific situation of the organization in which an information system is to be implemented. These situational factors, however, strongly determine the success of any implementation project. In this paper a method is provided that establishes situational factors of and their influence on implementation methods. The provided method enables a more successful implementation project, because the project team can create a more suitable implementation method for business process management system implementation projects

    Analysis of Multiterm Queries in Partitioned Signature File Environments

    Get PDF
    The concern of this study is the signature files which are used for information storage and retrieval in both formatted and unformatted databases. The analysis combines the concerns of signature extraction and signature file organization which have usually been treated as separate issues. Both the uniform frequency and single term query assumptions are relaxed and a comprehensive analysis is presented for multiterm query environments where terms can be classified based on their query and database occurrence frequencies. The performance of three superimposed signature generation schemes is explored as they are applied to a dynamic signature file organization based on linear hashing: Linear Hashing with Superimposed Signatures (LHSS). First scheme (SM) allows all terms set the same number of bits regardless of their discriminatory power whereas the second and third methods (MMS and MMM) emphasize the terms with high query and low database ooccurrence frequencies. Of these three schemes, only MMM takes the probability distribution of the number of query terms into account in finding the optimal mapping strategy. The main contribution of the study is the derivation of the performance evaluation formulas which is provided together with the analysis of various experimental settings. Results indicate that MMM outperforms the other methods as the gap between the discriminatory power of the terms gets larger. The absolute value of the savings provided by MMM reaches a maximum for the high query weight case. However, the extra savings decline sharply for high weight and moderately for the low weight queries with the increase in database size. The applicability of the derivations to other partitioned signature organizations is discussed and a detailed analysis of Fixed Prefix Partitioning (FPP) is provided as an example. An approximate formula that is shown to estimate the performance of both FPP and LHSS within an acceptable margin of error is also modified to account for the multiterm case

    Nearest Labelset Using Double Distances for Multi-label Classification

    Full text link
    Multi-label classification is a type of supervised learning where an instance may belong to multiple labels simultaneously. Predicting each label independently has been criticized for not exploiting any correlation between labels. In this paper we propose a novel approach, Nearest Labelset using Double Distances (NLDD), that predicts the labelset observed in the training data that minimizes a weighted sum of the distances in both the feature space and the label space to the new instance. The weights specify the relative tradeoff between the two distances. The weights are estimated from a binomial regression of the number of misclassified labels as a function of the two distances. Model parameters are estimated by maximum likelihood. NLDD only considers labelsets observed in the training data, thus implicitly taking into account label dependencies. Experiments on benchmark multi-label data sets show that the proposed method on average outperforms other well-known approaches in terms of Hamming loss, 0/1 loss, and multi-label accuracy and ranks second after ECC on the F-measure

    Colour-based image retrieval algorithms based on compact colour descriptors and dominant colour-based indexing methods

    Get PDF
    Content based image retrieval (CBIR) is reported as one of the most active research areas in the last two decades, but it is still young. Three CBIR’s performance problem in this study is inaccuracy of image retrieval, high complexity of feature extraction, and degradation of image retrieval after database indexing. This situation led to discrepancies to be applied on limited-resources devices (such as mobile devices). Therefore, the main objective of this thesis is to improve performance of CBIR. Images’ Dominant Colours (DCs) is selected as the key contributor for this purpose due to its compact property and its compatibility with the human visual system. Semantic image retrieval is proposed to solve retrieval inaccuracy problem by concentrating on the images’ objects. The effect of image background is reduced to provide more focus on the object by setting weights to the object and the background DCs. The accuracy improvement ratio is raised up to 50% over the compared methods. Weighting DCs framework is proposed to generalize this technique where it is demonstrated by applying it on many colour descriptors. For reducing high complexity of colour Correlogram in terms of computations and memory space, compact representation of Correlogram is proposed. Additionally, similarity measure of an existing DC-based Correlogram is adapted to improve its accuracy. Both methods are incorporated to produce promising colour descriptor in terms of time and memory space complexity. As a result, the accuracy is increased up to 30% over the existing methods and the memory space is decreased to less than 10% of its original space. Converting the abundance of colours into a few DCs framework is proposed to generalize DCs concept. In addition, two DC-based indexing techniques are proposed to overcome time problem, by using RGB and perceptual LUV colour spaces. Both methods reduce the search space to less than 25% of the database size with preserving the same accuracy

    Performance of query processing implementations in ranking-based text retrieval systems using inverted indices

    Get PDF
    Cataloged from PDF version of article.Similarity calculations and document ranking form the computationally expensive parts of query processing in ranking-based text retrieval. In this work, for these calculations, 11 alternative implementation techniques are presented under four different categories, and their asymptotic time and space complexities are investigated. To our knowledge, six of these techniques are not discussed in any other publication before. Furthermore, analytical experiments are carried out on a 30 GB document collection to evaluate the practical performance of different implementations in terms of query processing time and space consumption. Advantages and disadvantages of each technique are illustrated under different querying scenarios, and several experiments that investigate the scalability of the implementations are presented. (C) 2005 Elsevier Ltd. All rights reserved
    corecore