2 research outputs found

    Generalized observational slicing for tree-represented modelling languages

    Get PDF
    Model-driven software engineering raises the abstraction level making complex systems easier to understand than if written in textual code. Nevertheless, large complicated software systems can have large models, motivating the need for slicing techniques that reduce the size of a model. We present a generalization of observation-based slicing that allows the criterion to be defined using a variety of kinds of observable behavior and does not require any complex dependence analysis. We apply our implementation of generalized observational slicing for tree-structured representations to Simulink models. The resulting slice might be the subset of the original model responsible for an observed failure or simply the sub-model semantically related to a classic slicing criterion. Unlike its predecessors, the algorithm is also capable of slicing embedded Stateflow state machines. A study of nine real-world models drawn from four different application domains demonstrates the effectiveness of our approach at dramatically reducing Simulink model sizes for realistic observation scenarios: for 9 out of 20 cases, the resulting model has fewer than 25% of the original model's elements

    Automated Test Suite Generation for Time-Continuous Simulink Models

    Get PDF
    All engineering disciplines are founded and rely on models, al- though they may differ on purposes and usages of modeling. Inter- disciplinary domains such as Cyber Physical Systems (CPSs) seek approaches that incorporate different modeling needs and usages. Specifically, the Simulink modeling platform greatly appeals to CPS engineers due to its seamless support for simulation and code generation. In this paper, we propose a test generation approach that is applicable to Simulink models built for both purposes of simulation and code generation. We define test inputs and outputs as signals that capture evolution of values over time. Our test gener- ation approach is implemented as a meta-heuristic search algorithm and is guided to produce test outputs with diverse shapes according to our proposed notion of diversity. Our evaluation, performed on industrial and public domain models, demonstrates that: (1) In con- trast to the existing tools for testing Simulink models that are only applicable to a subset of code generation models, our approach is applicable to both code generation and simulation Simulink mod- els. (2) Our new notion of diversity for output signals outperforms random baseline testing and an existing notion of signal diversity in revealing faults in Simulink models. (3) The fault revealing ability of our test generation approach outperforms that of the Simulink Design Verifier, the only testing toolbox for Simulink
    corecore