1,379,213 research outputs found
The Reaction 7Li(pi+,pi-)7B and its Implications for 7B
The reaction 7Li(pi+,pi-)7B has been measured at incident pion energies of
30-90 MeV. 7Li constitutes the lightest target nucleus, where the pionic charge
exchange may proceed as a binary reaction to a discrete final state. Like in
the Delta-resonance region the observed cross sections are much smaller than
expected from the systematics found for heavier nuclei. In analogy to the
neutron halo case of 11Li this cross section suppression is interpreted as
evidence for a proton halo in the particle-unstable nucleus 7B.Comment: 4 pages, 4 figure
An Investigation into the Radial Velocity Variations of CoRoT-7
CoRoT-7b, the first transiting ``superearth'' exoplanet, has a radius of 1.7
R_Earth and a mass of 4.8 M_Earth. Ground-based radial velocity measurements
also detected an additional companion with a period of 3.7 days (CoRoT-7c) and
a mass of 8.4 M_Earth. The mass of CoRoT-7b is a crucial parameter for planet
structure models, but is difficult to determine because CoRoT-7 is a modestly
active star and there is at least one additional companion. A Fourier analysis
was performed on spectral data for CoRoT-7 taken with the HARPS spectrograph.
These data include RV measurements, spectral line bisectors, the full width at
half maximum of the cross-correlation function, and Ca II emission. The latter
3 quantities vary due to stellar activity and were used to assess the nature of
the observed RV variations. An analysis of a sub-set of the RV measurements
where multiple observations were made per night was also used to estimate the
RV amplitude from CoRoT-7b that was less sensitive to activity variations. Our
analysis indicates that the 0.85-d and 3.7-d RV signals of CoRoT-7b and
CoRoT-7c are present in the spectral data with a high degree of statistical
significance. We also find evidence for another significant RV signal at 9
days. An analysis of the activity indicator data reveals that this 9-d signal
most likely does not arise from activity, but possibly from an additional
companion. If due to a planetary companion the mass is m = 19.5 M_Earth,
assuming co-planarity with CoRoT-7b. A dynamical study of the three planet
system shows that it is stable over several hundred millions of years. Our
analysis yields a RV amplitude of 5.04 +/- 1.09 m/s for CoRoT-7b which
corresponds to a planet mass of m = 6.9 +/- 1.4 M_Earth. This increased mass
would make the planet CoRoT-7b more Earth-like in its internal structure.Comment: 20 pages, 20 figure
3.6 and 4.5 m Phase Curves of the Highly-Irradiated Hot Jupiters WASP-19b and HAT-P-7b
We analyze full-orbit phase curve observations of the transiting hot Jupiters
WASP-19b and HAT-P-7b at 3.6 and 4.5 m obtained using the Spitzer Space
Telescope. For WASP-19b, we measure secondary eclipse depths of and at 3.6 and 4.5 m, which are consistent
with a single blackbody with effective temperature K. The
measured 3.6 and 4.5 m secondary eclipse depths for HAT-P-7b are
and , which are well-described by a
single blackbody with effective temperature K. Comparing the phase
curves to the predictions of one-dimensional and three-dimensional atmospheric
models, we find that WASP-19b's dayside emission is consistent with a model
atmosphere with no dayside thermal inversion and moderately efficient day-night
circulation. We also detect an eastward-shifted hotspot, suggesting the
presence of a superrotating equatorial jet. In contrast, HAT-P-7b's dayside
emission suggests a dayside thermal inversion and relatively inefficient
day-night circulation; no hotspot shift is detected. For both planets, these
same models do not agree with the measured nightside emission. The
discrepancies in the model-data comparisons for WASP-19b might be explained by
high-altitude silicate clouds on the nightside and/or high atmospheric
metallicity, while the very low 3.6 m nightside planetary brightness for
HAT-P-7b may be indicative of an enhanced global C/O ratio. We compute Bond
albedos of 0 ( at ) and for WASP-19b and
HAT-P-7b, respectively. In the context of other planets with thermal phase
curve measurements, we show that WASP-19b and HAT-P-7b fit the general trend of
decreasing day-night heat recirculation with increasing irradiation.Comment: 22 pages, 29 figures, accepted by Ap
The Ethical Dilemma of Campaigning for Judicial Office: A Proposed Solution
Candidates for judicial office looked to the Canons of Judicial Ethics for the appropriate behavior expected of a candidate during a judicial campaign. Canons 30 and 32 require candidates to remain free from an appearance of influence by those who have contributed to the campaign. The difficulty in complying with the need to raise money and to remain free from the appearance of influence led to the adoption of the Code of Judicial Conduct in 1972. Canon 7B(2) bars candidates from solicitation and acceptance of campaign contributions. The Note examines the ambiguities surrounding Canon 7B(2), and conducts a survey of judges for their reaction to Canon 7B(2). Lastly, the Note proposes a resolution that would adequately blend the candidate\u27s need to fund his campaign and the requirement that he maintain the appearance of impartiality
Spin orbit alignment for KELT-7b and HAT-P-56b via Doppler tomography with TRES
We present Doppler tomographic analyses for the spectroscopic transits of
KELT-7b and HAT-P-56b, two hot-Jupiters orbiting rapidly rotating F-dwarf host
stars. These include analyses of archival TRES observations for KELT-7b, and a
new TRES transit observation of HAT-P-56b. We report spin-orbit aligned
geometries for KELT-7b (2.7 +/- 0.6 deg) and HAT-P-56b (8 +/- 2 deg). The host
stars KELT-7 and HAT-P-56 are among some of the most rapidly rotating
planet-hosting stars known. We examine the tidal re-alignment model for the
evolution of the spin-orbit angle in the context of the spin rates of these
stars. We find no evidence that the rotation rates of KELT-7 and HAT-P-56 have
been modified by star-planet tidal interactions, suggesting that the spin-orbit
angle of systems around these hot stars may represent their primordial
configuration. In fact, KELT-7 and HAT-P-56 are two of three systems in
super-synchronous, spin-orbit aligned states, where the rotation periods of the
host stars are faster than the orbital periods of the planets.Comment: 9 pages, accepted for publication in MNRA
HATS-7b: A Hot Super Neptune Transiting a Quiet K Dwarf Star
IW ../submit_V2/abstract.txt ( Row 1 Col 1 6:48 Ctrl-K H for help We report
the discovery by the HATSouth network of HATS-7b, a transiting Super-Neptune
with a mass of 0.120+/-0.012MJ, a radius of 0.563+/-(0.046,0.034)RJ, and an
orbital period of 3.1853days. The host star is a moderately bright
(V=13.340+/-0.010mag, K_S=10.976+/-0.026mag) K dwarf star with a mass of
0.849+/-0.027Msun , a radius of 0.815+/-(0.049,-0.035)Rsun, and a metallicity
of [Fe/H]=+0.250+/-0.080. The star is photometrically quiet to within the
precision of the HATSouth measurements and has low RV jitter. HATS-7b is the
second smallest radius planet discovered by a wide-field ground-based transit
survey, and one of only a handful of Neptune-size planets with mass and radius
determined to 10% precision. Theoretical modeling of HATS-7b yields a
hydrogen-helium fraction of 18+/-4% (rock-iron core and H2-He envelope), or
9+/-4% (ice core and H2-He envelope), i.e.it has a composition broadly similar
to that of Uranus and Neptune, and very different from that of Saturn, which
has 75% of its mass in H2-He. Based on a sample of transiting exoplanets with
accurately (<20%) determined parameters, we establish approximate power-law
relations for the envelopes of the mass-density distribution of exoplanets.
HATS-7b, which, together with the recently discovered HATS-8b, is one of the
first two transiting super-Neptunes discovered in the Southern sky, is a prime
target for additional follow-up observations with Southern hemisphere
facilities to characterize the atmospheres of Super-Neptunes (which we define
as objects with mass greater than that of Neptune, and smaller than halfway
between that of Neptune and Saturn, i.e. 0.054 MJ<Mp<0.18 MJ).Comment: 11 pages, accepted for publication by Ap
Search for Outer Massive Bodies around Transiting Planetary Systems: Candidates of Faint Stellar Companions around HAT-P-7
We present results of direct imaging observations for HAT-P-7 taken with the
Subaru HiCIAO and the Calar Alto AstraLux. Since the close-in transiting planet
HAT-P-7b was reported to have a highly tilted orbit, massive bodies such as
giant planets, brown dwarfs, or a binary star are expected to exist in the
outer region of this system. We show that there are indeed two candidates for
distant faint stellar companions around HAT-P-7. We discuss possible roles
played by such companions on the orbital evolution of HAT-P-7b. We conclude
that as there is a third body in the system as reported by Winn et al. (2009,
ApJL, 763, L99), the Kozai migration is less likely while planet-planet
scattering is possible.Comment: 8 pages, 3 figures, 2 tables, PASJ in pres
Physical State of the Deep Interior of the CoRoT-7b Exoplanet
The present study takes the CoRoT-7b exoplanet as an analogue for massive
terrestrial planets to investigate conditions, under which intrinsic magnetic
fields could be sustained in liquid cores. We examine the effect of
depth-dependent transport parameters (e.g., activation volume of mantle rock)
on a planet's thermal structure and the related heat flux across the core
mantle boundary. For terrestrial planets more massive than the Earth, our
calculations suggest that a substantial part of the lowermost mantle is in a
sluggish convective regime, primarily due to pressure effects on viscosity.
Hence, we find substantially higher core temperatures than previously reported
from parameterized convection models. We also discuss the effect of melting
point depression in the presence of impurities (e.g., sulfur) in iron-rich
cores and compare corresponding melting relations to the calculated thermal
structure. Since impurity effects become less important at the elevated
pressure and temperature conditions prevalent in the deep interior of CoRoT-7b,
iron-rich cores are likely solid, implying that a self-sustained magnetic field
would be absent.Comment: 4 pages, 3 figures. IAU 276 Proceeding
- …
