38,220 research outputs found

    Entanglement in the full state vector of boson sampling

    Full text link
    The full state vector of boson sampling is generated by passing S single photons through beam splitters of M modes. The initial Fock state is expressed withgeneralized coherent states, and an exact application of the unitary evolution becomes possible. Due to the favorable polynomial scaling in M , we can investigate Renyi entanglement entropies for moderate particle and huge mode numbers. We find (almost) Renyi index independent symmetric Page curves with maximum entropy at equal partition. Furthermore, the maximum entropy as a function of mode index saturates as a function of M in the collision-free subspace case. The asymptotic value of the entropy increases linearly with S. Furthermore, we show that the build-up of the entanglement leads to a cusp at subsystem size equal to S in the asymmetric entanglement curve. The maximum entanglement is reached surprisingly early before the mode population is distributed over the whole system

    Towards Advantages of Parameterized Quantum Pulses

    Full text link
    The advantages of quantum pulses over quantum gates have attracted increasing attention from researchers. Quantum pulses offer benefits such as flexibility, high fidelity, scalability, and real-time tuning. However, while there are established workflows and processes to evaluate the performance of quantum gates, there has been limited research on profiling parameterized pulses and providing guidance for pulse circuit design. To address this gap, our study proposes a set of design spaces for parameterized pulses, evaluating these pulses based on metrics such as expressivity, entanglement capability, and effective parameter dimension. Using these design spaces, we demonstrate the advantages of parameterized pulses over gate circuits in the aspect of duration and performance at the same time thus enabling high-performance quantum computing. Our proposed design space for parameterized pulse circuits has shown promising results in quantum chemistry benchmarks.Comment: 11 Figures, 4 Table

    ΔE\Delta E and the quantum arrow of time

    Full text link
    The world around us distinctly possesses an arrow of time (called Time's arrow in [1]). Classical thermodynamics provides an arrow of time in the form of the second law of thermodynamics which also has a beautiful statistical interpretation [2]. But a clear picture of the quantum origin of the arrow of time has been lacking so far. Here we show that an arrow of time arises in quantum chaotic systems. We show that, for a closed quantum system which is also chaotic [3,4], the change in entropy is non-negative when the system is generically perturbed. Physical systems are, in general, highly interacting and are good examples of chaotic systems. We show our result by keeping track of the change in energy when the system is perturbed. Additionally, we also show that one can still lower the entropy of a closed chaotic system by performing a fine-tuned perturbation. But fine-tuning the perturbation requires a large quantity of information of the system. This is reminiscent of the Maxwell's demon problem in classical thermodynamics and its subsequent resolution [5,6].Comment: Major revisio

    Quantum Mechanics Lecture Notes. Selected Chapters

    Full text link
    These are extended lecture notes of the quantum mechanics course which I am teaching in the Weizmann Institute of Science graduate physics program. They cover the topics listed below. The first four chapter are posted here. Their content is detailed on the next page. The other chapters are planned to be added in the coming months. 1. Motion in External Electromagnetic Field. Gauge Fields in Quantum Mechanics. 2. Quantum Mechanics of Electromagnetic Field 3. Photon-Matter Interactions 4. Quantization of the Schr\"odinger Field (The Second Quantization) 5. Open Systems. Density Matrix 6. Adiabatic Theory. The Berry Phase. The Born-Oppenheimer Approximation 7. Mean Field Approaches for Many Body Systems -- Fermions and Boson

    Soliton Gas: Theory, Numerics and Experiments

    Full text link
    The concept of soliton gas was introduced in 1971 by V. Zakharov as an infinite collection of weakly interacting solitons in the framework of Korteweg-de Vries (KdV) equation. In this theoretical construction of a diluted soliton gas, solitons with random parameters are almost non-overlapping. More recently, the concept has been extended to dense gases in which solitons strongly and continuously interact. The notion of soliton gas is inherently associated with integrable wave systems described by nonlinear partial differential equations like the KdV equation or the one-dimensional nonlinear Schr\"odinger equation that can be solved using the inverse scattering transform. Over the last few years, the field of soliton gases has received a rapidly growing interest from both the theoretical and experimental points of view. In particular, it has been realized that the soliton gas dynamics underlies some fundamental nonlinear wave phenomena such as spontaneous modulation instability and the formation of rogue waves. The recently discovered deep connections of soliton gas theory with generalized hydrodynamics have broadened the field and opened new fundamental questions related to the soliton gas statistics and thermodynamics. We review the main recent theoretical and experimental results in the field of soliton gas. The key conceptual tools of the field, such as the inverse scattering transform, the thermodynamic limit of finite-gap potentials and the Generalized Gibbs Ensembles are introduced and various open questions and future challenges are discussed.Comment: 35 pages, 8 figure

    Grasping nothing: a study of minimal ontologies and the sense of music

    Get PDF
    If music were to have a proper sense – one in which it is truly given – one might reasonably place this in sound and aurality. I contend, however, that no such sense exists; rather, the sense of music takes place, and it does so with the impossible. To this end, this thesis – which is a work of philosophy and music – advances an ontology of the impossible (i.e., it thinks the being of what, properly speaking, can have no being) and considers its implications for music, articulating how ontological aporias – of the event, of thinking the absolute, and of sovereignty’s dismemberment – imply senses of music that are anterior to sound. John Cage’s Silent Prayer, a nonwork he never composed, compels a rerethinking of silence on the basis of its contradictory status of existence; Florian Hecker et al.’s Speculative Solution offers a basis for thinking absolute music anew to the precise extent that it is a discourse of meaninglessness; and Manfred Werder’s [yearn] pieces exhibit exemplarily that music’s sense depends on the possibility of its counterfeiting. Inso-much as these accounts produce musical senses that take the place of sound, they are also understood to be performances of these pieces. Here, then, thought is music’s organon and its instrument

    Variable optical elements for fast focus control

    Full text link
    In this Review, we survey recent developments in the emerging field of high-speed variable-z-focus optical elements, which are driving important innovations in advanced imaging and materials processing applications. Three-dimensional biomedical imaging, high-throughput industrial inspection, advanced spectroscopies, and other optical characterization and materials modification methods have made great strides forward in recent years due to precise and rapid axial control of light. Three state-of-the-art key optical technologies that enable fast z-focus modulation are reviewed, along with a discussion of the implications of the new developments in variable optical elements and their impact on technologically relevant applications

    Noether's second theorem and covariant field theory of mechanical stresses in inhomogeneous ionic liquids

    Full text link
    In this paper, we present a covariant approach that utilizes Noether's second theorem to derive a symmetric stress tensor from the grand thermodynamic potential functional. We focus on the practical case where the density of the grand thermodynamic potential is dependent on the first and second coordinate derivatives of the scalar order parameters. Our approach is applied to several models of inhomogeneous ionic liquids that consider electrostatic correlations of ions or short-range correlations related to packing effects. Specifically, we derive analytical expressions for the symmetric stress tensors of the Cahn-Hilliard-like model, Bazant-Storey-Kornyshev model, and Maggs-Podgornik-Blossey model. All of these expressions are found to be consistent with respective self-consistent field equations.Comment: Submitted to Journal of Chemical Physic

    On the fermionic couplings of axionic dark matter

    Full text link
    In the non-relativistic limit, two types of dark matter axion interactions with fermions are thought to dominate: one is induced by the spatial gradient of the axion field and called the axion wind, and the other by the time-derivative of the axion field, generating axioelectric effects. By generalizing Schiff theorem, it is demonstrated that this latter operator is actually strongly screened. For a neutral fermion, it can be entirely rotated away and is unobservable. For charged fermions, the only effect that can peek through the screening is an axion-induced electric dipole moment (EDM). These EDMs are not related to the axion coupling to gluons, represent a prediction of the Dirac theory analogous to the g = 2 magnetic moments, are not further screened by the original Schiff theorem, and are ultimately responsible for inducing the usual axioelectric ionization. The two main phenomenological consequences are then that first the axion-induced neutron EDM could be several orders of magnitude larger than expected from the axion gluonic coupling, and second, that the electron EDM could also become available, and could actually be highly sensitive to relic axions.Comment: 30 pages, no figure. Status of the axioelectric effect clarified, and improved EDM numerical estimate

    Sobre o Estilo na História Intelectual

    Get PDF
    Style in past Ages denotes general sensibilities that guide thought and action. Attempts to show how style derives from the material circumstances of living remain inconclusive because of the difficulty in deciding which parts of culture past lie at the center of it. The advantages and the drawbacks of modelsand schemes offered by major theorists of the past several generations are used to support the proposition that philosophy is a dubious guide for practicing intellectual historians, who do best when they make their own methods from the materialthey study.O estilo no passado denotava sensibilidades gerais que guiam o pensamento e a ação. Tentativas de mostrar como o estilo deriva das circunstâncias materiais da vida permanecem inconclusivas por causa da dificuldade em decidir quais partes da cultura do passado estão no centro dele. As vantagens e desvantagens dos modelos e esquemas oferecidos pelos principais teóricos das gerações passadas são usadas para apoiar a proposição de que a filosofia é um guia duvidoso para praticantes da história intelectual, que se saem melhor quando criam seus próprios métodos a partir do material que estudam
    • …
    corecore