9,860,019 research outputs found

    Effect of topology on the transport properties of two interacting dots

    Full text link
    The transport properties of a system of two interacting dots, one of them directly connected to the leads constituting a side-coupled configuration (SCD), are studied in the weak and strong tunnel-coupling limits. The conductance behavior of the SCD structure has new and richer physics than the better studied system of two dots aligned with the leads (ACD). In the weak coupling regime and in the case of one electron per dot, the ACD configuration gives rise to two mostly independent Kondo states. In the SCD topology, the inserted dot is in a Kondo state while the side-connected one presents Coulomb blockade properties. Moreover, the dot spins change their behavior, from an antiferromagnetic coupling to a ferromagnetic correlation, as a consequence of the interaction with the conduction electrons. The system is governed by the Kondo effect related to the dot that is embedded into the leads. The role of the side-connected dot is to introduce, when at resonance, a new path for the electrons to go through giving rise to the interferences responsible for the suppression of the conductance. These results depend on the values of the intra-dot Coulomb interactions. In the case where the many-body interaction is restricted to the side-connected dot, its Kondo correlation is responsible for the scattering of the conduction electrons giving rise to the conductance suppression

    Low temperature magnetic phase diagram of the cubic non-Fermi liquid system CeIn_(3-x)Sn_x

    Full text link
    In this paper we report a comprehensive study of the magnetic susceptibility (\chi), resistivity (\rho), and specific heat (C_P), down to 0.5 K of the cubic CeIn_(3-x)Sn_x alloy. The ground state of this system evolves from antiferromagnetic (AF) in CeIn_3(T_N=10.2 K) to intermediate-valent in CeSn_3, and represents the first example of a Ce-lattice cubic non-Fermi liquid (NFL) system where T_N(x) can be traced down to T=0 over more than a decade of temperature. Our results indicate that the disappearance of the AF state occurs near x_c ~ 0.7, although already at x ~ 0.4 significant modifications of the magnetic ground state are observed. Between these concentrations, clear NFL signatures are observed, such as \rho(T)\approx \rho_0 + A T^n (with n<1.5) and C_P(T)\propto -T ln(T) dependencies. Within the ordered phase a first order phase transition occurs for 0.25 < x < 0.5. With larger Sn doping, different weak \rho(T) dependencies are observed at low temperatures between x=1 and x=3 while C_P/T shows only a weak temperature dependence.Comment: 7 pages, 7 figures. Accepted in Eur. J. Phys.

    On Unique Predictions for Single Spin Azimuthal Asymmetry

    Full text link
    Theoretically there are two approaches to predict single spin azimuthal asymmetries. One is to take transverse momenta of partons into account by using transverse momentum dependent parton distributions, while another is to take asymmetries as a twist-3 effect. The nonperturbative effects in these approaches are parameterized with different matrix elements and predictions can be different. Recently, gauge invariant definitions of transverse momentum dependent parton distributions were derived. With these definitions it can be shown that there are relations between nonperturbative matrix elements in two approaches. These relations may enable us to unify two approaches and to have unique predictions for single spin azimuthal asymmetries.In this letter we derive these relations by using time-reversal symmetry and show that even with these relations the single spin azimuthal asymmetry in Drell-Yan process is predicted differently in different approaches.Comment: Improved representatio

    Realistic Neutrino Masses from Multi-brane Extensions of the Randall-Sundrum Model?

    Full text link
    Scenarios based on the existence of large or warped (Randall-Sundrum model) extra dimensions have been proposed for addressing the long standing puzzle of gauge hierarchy problem. Within the contexts of both those scenarios, a novel and original type of mechanism generating small (Dirac) neutrino masses, which relies on the presence of additional right-handed neutrinos that propagate in the bulk, has arisen. The main objective of the present study is to determine whether this geometrical mechanism can produce reasonable neutrino masses also in the interesting multi-brane extensions of the Randall-Sundrum model. We demonstrate that, in some multi-brane extensions, neutrino masses in agreement with all relevant experimental bounds can indeed be generated but at the price of a constraint (stronger than the existing ones) on the bulk geometry, and that the other multi-brane models even conflict with those experimental bounds.Comment: 29 pages, 3 figures, Latex file. References added, study extende

    Random phases in Bose-Einstein condensates with higher order nonlinearities

    Full text link
    We present a statistical description of Bose-Einstein condensates with general higher order nonlinearities. In particular, we investigate the case of cubic-quintic nonlinearities, of particular interest for dilute condensates. The implication of decoherence for the stability properties of the condensate is discussed.Comment: 3 pages, no figs., to appear in Eur. Phys. J.

    High-contrast dark resonance on the D2 - line of 87Rb in a vapor cell with different directions of the pump - probe waves

    Full text link
    We propose a novel method enabling to create a high-contrast dark resonance in the 87Rb vapor D2-line. The method is based on an optical pumping of atoms into the working states by a two-frequency, linearly-polarized laser radiation propagating perpendicularly to the probe field. This new scheme is compared to the traditional scheme involving the circularly-polarized probe beam only, and significant improvement of the dark resonance parameters is found. Qualitative considerations are confirmed by numerical calculations.Comment: 7 pages, 4 figure

    Spin Polarizabilities of the Nucleon from Polarized Low Energy Compton Scattering

    Full text link
    As guideline for forthcoming experiments, we present predictions from Chiral Effective Field Theory for polarized cross sections in low energy Compton scattering for photon energies below 170 MeV, both on the proton and on the neutron. Special interest is put on the role of the nucleon spin polarizabilities which can be examined especially well in polarized Compton scattering. We present a model-independent way to extract their energy dependence and static values from experiment, interpreting our findings also in terms of the low energy effective degrees of freedom inside the nucleon: The polarizabilities are dominated by chiral dynamics from the pion cloud, except for resonant multipoles, where contributions of the Delta(1232) resonance turn out to be crucial. We therefore include it as an explicit degree of freedom. We also identify some experimental settings which are particularly sensitive to the spin polarizabilities.Comment: 30 pages, 19 figure

    Structure of the Isovector Dipole Resonance in Neutron-Rich 60Ca^{60}Ca Nucleus and Direct Decay from Pygmy Resonance

    Full text link
    The structure of the isovector dipole resonance in neutron-rich calcium isotope, 60Ca^{60}Ca, has been investigated by implementing a careful treatment of the differences of neutron and proton radii in the continuum random phase approximation (RPARPA). The calculations have taken into account the current estimates of the neutron skin. The estimates of the escape widths for direct neutron decay from the pygmy dipole resonance (PDRPDR) were shown rather wide, implicating a strong coupling to the continuum. The width of the giant dipole resonance (GDRGDR) was evaluated, bringing on a detailed discussion about its microscopic structure.Comment: 13 pages, 2 figures, RevTex

    Landau-Zener transition of a two-level system driven by spin chains near their critical points

    Full text link
    The Landau-Zener(LZ) transition of a two-level system coupling to spin chains near their critical points is studied in this paper. Two kinds of spin chains, the Ising spin chain and XY spin chain, are considered. We calculate and analyze the effects of system-chain coupling on the LZ transition. A relation between the LZ transition and the critical points of the spin chain is established. These results suggest that LZ transitions may serve as the witnesses of criticality of the spin chain. This may provide a new way to study quantum phase transitions as well as LZ transitions.Comment: 5 pages, 4 figures. European Physical Journals D accepte

    Bragg spectroscopy of discrete axial quasiparticle modes in a cigar-shaped degenerate Bose gas

    Full text link
    We propose an experiment in which long wavelength discrete axial quasiparticle modes can be imprinted in a 3D cigar-shaped Bose-Einstein condensate by using two-photon Bragg scattering experiments, similar to the experiment at the Weizmann Institute [J. Steinhauer {\em et al.}, Phys. Rev. Lett. {\bf 90}, 060404 (2003)] where short wavelength axial phonons with different number of radial modes have been observed. We provide values of the momentum, energy and time duration of the two-photon Bragg pulse and also the two-body interaction strength which are needed in the Bragg scattering experiments in order to observe the long wavelength discrete axial modes. These discrete axial modes can be observed when the system is dilute and the time duration of the Bragg pulse is long enough.Comment: 5 pages, 3 figures, title, abstract, results changed, references added. to appear in The European Physical Journal
    corecore