2,256 research outputs found

    Altered Resting State Cortico-Striatal Connectivity in Mild to Moderate Stage Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by dopamine depletion in the striatum. One consistent pathophysiological hallmark of PD is an increase in spontaneous oscillatory activity in the basal ganglia thalamocortical networks. We evaluated these effects using resting state functional connectivity MRI in mild to moderate stage Parkinson's patients on and off l-DOPA and age-matched controls using six different striatal seed regions. We observed an overall increase in the strength of cortico-striatal functional connectivity in PD patients off l-DOPA compared to controls. This enhanced connectivity was down-regulated by l-DOPA as shown by an overall decrease in connectivity strength, particularly within motor cortical regions. We also performed a frequency content analysis of the BOLD signal time course extracted from the six striatal seed regions. PD off l-DOPA exhibited increased power in the frequency band 0.02–0.05 Hz compared to controls and to PD on l-DOPA. The l-DOPA associated decrease in the power of this frequency range modulated the l-DOPA associated decrease in connectivity strength between striatal seeds and the thalamus. In addition, the l-DOPA associated decrease in power in this frequency band correlated with the l-DOPA associated improvement in cognitive performance. Our results demonstrate that PD and l-DOPA modulate striatal resting state BOLD signal oscillations and cortico-striatal network coherence

    Reduced brain activation during inhibitory control in children with COMT Val/Val genotype

    Full text link
    IntroductionBehavioral undercontrol is a well‐established risk factor for substance use disorder, identifiable at an early age well before the onset of substance use. However, the biological mechanistic structure underlying the behavioral undercontrol/substance use relationship is not well understood. The enzyme catechol O‐methyltransferase (COMT) catabolizes dopamine and norepinephrine in the prefrontal cortex and striatum, brain regions involved in behavioral control. The goal of this work was to investigate the association between genetic variation in COMT functioning and fronto‐striatal brain functioning during successful inhibitory control, a critical aspect of behavioral control.MethodsParticipants were 65 (22 female) 7–12 year olds who were genotyped for the functional COMT Val158Met (rs4680) single‐nucleotide polymorphism and underwent functional magnetic resonance imaging while performing a go/no‐go task. The majority of the sample (80%) had at least one parent with a history of alcohol use disorder and were thus at heightened risk for substance use disorders.ResultsThere was a significant main effect of genotype on brain activation in left and right putamen during successful versus failed inhibition and in right inferior frontal gyrus/insula during successful inhibition versus baseline. Follow‐up tests revealed that Met homozygotes had greater activation in each region relative to Val homozygotes.ConclusionsThese results are relevant for understanding how specific genes influence brain functioning related to underlying risk factors for substance use disorders and other disinhibitory psychopathologies.The goal of this work was to investigate the association between genetic variation in COMT functioning and fronto‐striatal brain functioning during inhibitory control, a critical aspect of behavioral control. Participants were 65 (22 female) 7–12 year olds who were genotyped for the functional COMT Val158Met (rs4680) single‐nucleotide polymorphism and underwent functional magnetic resonance imaging while performing a go/no‐go task. There was a significant main effect of genotype on brain activation in left and right putamen during successful versus failed inhibition and in right inferior frontal gyrus/insula during successful inhibition versus baseline; follow‐up tests revealed that Met homozygotes had greater activation in each region relative to Val homozygotes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135697/1/brb3577_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135697/2/brb3577.pd

    Anomalous morphology in left hemisphere motor and premotor cortex of children who stutter

    Full text link
    Stuttering is a neurodevelopmental disorder that affects the smooth flow of speech production. Stuttering onset occurs during a dynamic period of development when children first start learning to formulate sentences. Although most children grow out of stuttering naturally, ∼1% of all children develop persistent stuttering that can lead to significant psychosocial consequences throughout one’s life. To date, few studies have examined neural bases of stuttering in children who stutter, and even fewer have examined the basis for natural recovery versus persistence of stuttering. Here we report the first study to conduct surface-based analysis of the brain morphometric measures in children who stutter. We used FreeSurfer to extract cortical size and shape measures from structural MRI scans collected from the initial year of a longitudinal study involving 70 children (36 stuttering, 34 controls) in the 3–10-year range. The stuttering group was further divided into two groups: persistent and recovered, based on their later longitudinal visits that allowed determination of their eventual clinical outcome. A region of interest analysis that focused on the left hemisphere speech network and a whole-brain exploratory analysis were conducted to examine group differences and group × age interaction effects. We found that the persistent group could be differentiated from the control and recovered groups by reduced cortical thickness in left motor and lateral premotor cortical regions. The recovered group showed an age-related decrease in local gyrification in the left medial premotor cortex (supplementary motor area and and pre-supplementary motor area). These results provide strong evidence of a primary deficit in the left hemisphere speech network, specifically involving lateral premotor cortex and primary motor cortex, in persistent developmental stuttering. Results further point to a possible compensatory mechanism involving left medial premotor cortex in those who recover from childhood stuttering.This study was supported by Award Numbers R01DC011277 (SC) and R01DC007683 (FG) from the National Institute on Deafness and other Communication Disorders (NIDCD). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIDCD or the National Institutes of Health. (R01DC011277 - National Institute on Deafness and other Communication Disorders (NIDCD); R01DC007683 - National Institute on Deafness and other Communication Disorders (NIDCD))Accepted manuscrip

    The validity of using ICD-9 codes and pharmacy records to identify patients with chronic obstructive pulmonary disease

    Get PDF
    Background: Administrative data is often used to identify patients with chronic obstructive pulmonary disease (COPD), yet the validity of this approach is unclear. We sought to develop a predictive model utilizing administrative data to accurately identify patients with COPD. Methods: Sequential logistic regression models were constructed using 9573 patients with postbronchodilator spirometry at two Veterans Affairs medical centers (2003-2007). COPD was defined as: 1) FEV1/FVC <0.70, and 2) FEV1/FVC < lower limits of normal. Model inputs included age, outpatient or inpatient COPD-related ICD-9 codes, and the number of metered does inhalers (MDI) prescribed over the one year prior to and one year post spirometry. Model performance was assessed using standard criteria. Results: 4564 of 9573 patients (47.7%) had an FEV1/FVC < 0.70. The presence of ≥1 outpatient COPD visit had a sensitivity of 76% and specificity of 67%; the AUC was 0.75 (95% CI 0.74-0.76). Adding the use of albuterol MDI increased the AUC of this model to 0.76 (95% CI 0.75-0.77) while the addition of ipratropium bromide MDI increased the AUC to 0.77 (95% CI 0.76-0.78). The best performing model included: ≥6 albuterol MDI, ≥3 ipratropium MDI, ≥1 outpatient ICD-9 code, ≥1 inpatient ICD-9 code, and age, achieving an AUC of 0.79 (95% CI 0.78-0.80). Conclusion: Commonly used definitions of COPD in observational studies misclassify the majority of patients as having COPD. Using multiple diagnostic codes in combination with pharmacy data improves the ability to accurately identify patients with COPD.Department of Veterans Affairs, Health Services Research and Development (DHA), American Lung Association (CI- 51755-N) awarded to DHA, the American Thoracic Society Fellow Career Development AwardPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/84155/1/Cooke - ICD9 validity in COPD.pd

    On the Location of the Gamma-ray Emission in the 2008 Outburst in the BL Lacertae Object AO 0235+164 through Observations across the Electromagnetic Spectrum

    Get PDF
    We present observations of a major outburst at centimeter, millimeter, optical, X-ray, and gamma-ray wavelengths of the BL Lacertae object AO 0235+164. We analyze the timing of multi-waveband variations in the flux and linear polarization, as well as changes in Very Long Baseline Array (VLBA) images at 7mm with 0.15 milliarcsecond resolution. The association of the events at different wavebands is confirmed at high statistical significance by probability arguments and Monte-Carlo simulations. A series of sharp peaks in optical linear polarization, as well as a pronounced maximum in the 7 mm polarization of a superluminal jet knot, indicate rapid fluctuations in the degree of ordering of the magnetic field. These results lead us to conclude that the outburst occurred in the jet both in the quasi-stationary "core" and in the superluminal knot, both parsecs downstream of the supermassive black hole. We interpret the outburst as a consequence of the propagation of a disturbance, elongated along the line of sight by light-travel time delays, that passes through a standing recollimation shock in the core and propagates down the jet to create the superluminal knot. The multi-wavelength light curves vary together on long time-scales (months/years), but the correspondence is poorer on shorter time-scales. This, as well as the variability of the polarization and the dual location of the outburst, agrees with the expectations of a multi-zone emission model in which turbulence plays a major role in modulating the synchrotron and inverse Compton fluxes.Comment: Accepted for Publication in the Astrophysical Journal Letters. 7 pages (including 5 figures). Minor corrections with regard to previous version, as proposed by the refere

    Transcallosal sensorimotor fiber tract structure‐function relationships

    Full text link
    Recent studies have demonstrated neuroanatomically selective relationships among white matter tract microstructure, physiological function, and task performance. Such findings suggest that the microstructure of transcallosal motor fibers may reflect the capacity for interhemispheric inhibition between the primary motor cortices, although full characterization of the transcallosal inhibitory sensorimotor network is lacking. Thus, the goal of this study was to provide a comprehensive description of transcallosal fibers connecting homologous sensorimotor cortical regions and to identify the relationship(s) between fiber tract microstructure and interhemispheric inhibition during voluntary cortical activity. To this end, we assessed microstructure of fiber tracts connecting homologous sensorimotor regions of the cortex with diffusion tensor imaging. We also assessed interhemispheric inhibition by eliciting the ipsilateral silent period (iSP) within the same participants. We mapped mutually exclusive transcallosal connections between homologous sensorimotor regions and computed quantitative metrics of each fiber tract. Paralleling work in non‐human primates, we found the densest interhemispheric sensorimotor connections to be between the medial motor areas. Additionally, we provide a midsagittal callosal atlas in normalized Montreal Neurological Institute (MNI) space for future studies to use when investigating callosal fiber tracts connecting primary and secondary sensorimotor cortices. Finally, we report a strong, positive relationship ( r = 0.76) between strength of interhemispheric inhibition (iSP) and microstructure of interhemispheric fibers that is specific to tracts connecting the primary motor cortices. Thus, increased fiber microstructure in young adults predicts interhemispheric inhibitory capacity. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96360/1/21437_ftp.pd

    Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells

    Get PDF
    Neural crest stem cells (NCSCs) persist in peripheral nerves throughout late gestation but their function is unknown. Current models of nerve development only consider the generation of Schwann cells from neural crest, but the presence of NCSCs raises the possibility of multilineage differentiation. We performed Cre-recombinase fate mapping to determine which nerve cells are neural crest derived. Endoneurial fibroblasts, in addition to myelinating and non-myelinating Schwann cells, were neural crest derived, whereas perineurial cells, pericytes and endothelial cells were not. This identified endoneurial fibroblasts as a novel neural crest derivative, and demonstrated that trunk neural crest does give rise to fibroblasts in vivo, consistent with previous studies of trunk NCSCs in culture. The multilineage differentiation of NCSCs into glial and non-glial derivatives in the developing nerve appears to be regulated by neuregulin, notch ligands, and bone morphogenic proteins, as these factors are expressed in the developing nerve, and cause nerve NCSCs to generate Schwann cells and fibroblasts, but not neurons, in culture. Nerve development is thus more complex than was previously thought, involving NCSC self-renewal, lineage commitment and multilineage differentiation

    Involvement of the cortico-basal ganglia-thalamocortical loop in developmental stuttering

    Get PDF
    Stuttering is a complex neurodevelopmental disorder that has to date eluded a clear explication of its pathophysiological bases. In this review, we utilize the Directions Into Velocities of Articulators (DIVA) neurocomputational modeling framework to mechanistically interpret relevant findings from the behavioral and neurological literatures on stuttering. Within this theoretical framework, we propose that the primary impairment underlying stuttering behavior is malfunction in the cortico-basal ganglia-thalamocortical (hereafter, cortico-BG) loop that is responsible for initiating speech motor programs. This theoretical perspective predicts three possible loci of impaired neural processing within the cortico-BG loop that could lead to stuttering behaviors: impairment within the basal ganglia proper; impairment of axonal projections between cerebral cortex, basal ganglia, and thalamus; and impairment in cortical processing. These theoretical perspectives are presented in detail, followed by a review of empirical data that make reference to these three possibilities. We also highlight any differences that are present in the literature based on examining adults versus children, which give important insights into potential core deficits associated with stuttering versus compensatory changes that occur in the brain as a result of having stuttered for many years in the case of adults who stutter. We conclude with outstanding questions in the field and promising areas for future studies that have the potential to further advance mechanistic understanding of neural deficits underlying persistent developmental stuttering.R01 DC007683 - NIDCD NIH HHS; R01 DC011277 - NIDCD NIH HHSPublished versio

    Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches.

    Get PDF
    The cerebellum plays a role in a wide variety of complex behaviors. In order to better understand the role of the cerebellum in human behavior, it is important to know how this structure interacts with cortical and other subcortical regions of the brain. To date, several studies have investigated the cerebellum using resting-state functional connectivity magnetic resonance imaging (fcMRI; Krienen and Buckner, 2009; O'Reilly et al., 2010; Buckner et al., 2011). However, none of this work has taken an anatomically-driven lobular approach. Furthermore, though detailed maps of cerebral cortex and cerebellum networks have been proposed using different network solutions based on the cerebral cortex (Buckner et al., 2011), it remains unknown whether or not an anatomical lobular breakdown best encompasses the networks of the cerebellum. Here, we used fcMRI to create an anatomically-driven connectivity atlas of the cerebellar lobules. Timecourses were extracted from the lobules of the right hemisphere and vermis. We found distinct networks for the individual lobules with a clear division into "motor" and "non-motor" regions. We also used a self-organizing map (SOM) algorithm to parcellate the cerebellum. This allowed us to investigate redundancy and independence of the anatomically identified cerebellar networks. We found that while anatomical boundaries in the anterior cerebellum provide functional subdivisions of a larger motor grouping defined using our SOM algorithm, in the posterior cerebellum, the lobules were made up of sub-regions associated with distinct functional networks. Together, our results indicate that the lobular boundaries of the human cerebellum are not necessarily indicative of functional boundaries, though anatomical divisions can be useful. Additionally, driving the analyses from the cerebellum is key to determining the complete picture of functional connectivity within the structure
    corecore