36 research outputs found

    Elastic circuits

    Get PDF
    Elasticity in circuits and systems provides tolerance to variations in computation and communication delays. This paper presents a comprehensive overview of elastic circuits for those designers who are mainly familiar with synchronous design. Elasticity can be implemented both synchronously and asynchronously, although it was traditionally more often associated with asynchronous circuits. This paper shows that synchronous and asynchronous elastic circuits can be designed, analyzed, and optimized using similar techniques. Thus, choices between synchronous and asynchronous implementations are localized and deferred until late in the design process.Peer ReviewedPostprint (published version

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur

    FPGA implementations of feed forward neural network by using floating point hardware accelerators

    Get PDF
    This paper documents the research towards the analysis of different solutions to implement a Neural Network architecture on a FPGA design by using floating point accelerators. In particular, two different implementations are investigated: a high level solution to create a neural network on a soft processor design, with different strategies for enhancing the performance of the process; a low level solution, achieved by a cascade of floating point arithmetic elements. Comparisons of the achieved performance in terms of both time consumptions and FPGA resources employed for the architectures are presented

    Improving PARMA Trailing

    Full text link
    Taylor introduced a variable binding scheme for logic variables in his PARMA system, that uses cycles of bindings rather than the linear chains of bindings used in the standard WAM representation. Both the HAL and dProlog languages make use of the PARMA representation in their Herbrand constraint solvers. Unfortunately, PARMA's trailing scheme is considerably more expensive in both time and space consumption. The aim of this paper is to present several techniques that lower the cost. First, we introduce a trailing analysis for HAL using the classic PARMA trailing scheme that detects and eliminates unnecessary trailings. The analysis, whose accuracy comes from HAL's determinism and mode declarations, has been integrated in the HAL compiler and is shown to produce space improvements as well as speed improvements. Second, we explain how to modify the classic PARMA trailing scheme to halve its trailing cost. This technique is illustrated and evaluated both in the context of dProlog and HAL. Finally, we explain the modifications needed by the trailing analysis in order to be combined with our modified PARMA trailing scheme. Empirical evidence shows that the combination is more effective than any of the techniques when used in isolation. To appear in Theory and Practice of Logic Programming.Comment: 36 pages, 7 figures, 8 table

    Towards a coordination model for interactive systems

    Get PDF
    When modelling complex interactive systems, traditional interactor-based approaches suffer from lack of expressiveness regarding the composition of the different interactors present in the user interface model into a coherent system. In this paper we investigate an alternative approach to the composition of interactors for the specification of complex interactive systems which is based on the coordination paradigm. We layout the fundations for the work and present an illustrative example. Lines for future work are identifiedFundação para a Ciência e a Tecnologia (FCT) Fundo Europeu de Desenvolvimento Regional (FEDER

    Configurations of web services

    Get PDF
    The quest for sound foundations for the orchestration of web services is still open. To a great extent its relevance comes from the possibility of defining formal semantics for new language standards (like BPEL4WS or WS-CDL) in this emerging and challenging technology. As a step in that direction, this paper resorts to a notion of configuration, developed by the authors in the context of a Reo-like exogenous coordination model for software components, to formally express service orchestration. The latter is regarded as involving both the architectural assembly of independent services and the description of their interactions.Fundação para a Ciência e a Tecnologia (FCT) - PURe Project, contract POSI/ICHS/44304/2002

    State-based components made generic

    Get PDF
    Genericity is a topic which is not sufficiently developed in state-based systems modelling, mainly due to a myriad of approaches and behaviour models which lack unification. This paper adopts coalgebra theory to propose a generic notion of a state-based software component, and an associated calculus, by quantifying over behavioural models specified as strong monads. This leads to the pointfree, calculational reasoning style which is typical of the so-called Bird-Meertens school.(undefined

    On the Correctness of Pull-Tabbing

    Full text link
    Pull-tabbing is an evaluation approach for functional logic computations, based on a graph transformation recently proposed, which avoids making irrevocable non-deterministic choices that would jeopardize the completeness of computations. In contrast to other approaches with this property, it does not require an upfront cloning of a possibly large portion of the choice's context. We formally define the pull-tab transformation, characterize the class of programs for which the transformation is intended, extend the computations in these programs to include the transformation, and prove the correctness of the extended computations
    corecore