118 research outputs found

    WoX+: A Meta-Model-Driven Approach to Mine User Habits and Provide Continuous Authentication in the Smart City

    Get PDF
    The literature is rich in techniques and methods to perform Continuous Authentication (CA) using biometric data, both physiological and behavioral. As a recent trend, less invasive methods such as the ones based on context-aware recognition allows the continuous identification of the user by retrieving device and app usage patterns. However, a still uncovered research topic is to extend the concepts of behavioral and context-aware biometric to take into account all the sensing data provided by the Internet of Things (IoT) and the smart city, in the shape of user habits. In this paper, we propose a meta-model-driven approach to mine user habits, by means of a combination of IoT data incoming from several sources such as smart mobility, smart metering, smart home, wearables and so on. Then, we use those habits to seamlessly authenticate users in real time all along the smart city when the same behavior occurs in different context and with different sensing technologies. Our model, which we called WoX+, allows the automatic extraction of user habits using a novel Artificial Intelligence (AI) technique focused on high-level concepts. The aim is to continuously authenticate the users using their habits as behavioral biometric, independently from the involved sensing hardware. To prove the effectiveness of WoX+ we organized a quantitative and qualitative evaluation in which 10 participants told us a spending habit they have involving the use of IoT. We chose the financial domain because it is ubiquitous, it is inherently multi-device, it is rich in time patterns, and most of all it requires a secure authentication. With the aim of extracting the requirement of such a system, we also asked the cohort how they expect WoX+ will use such habits to securely automatize payments and identify them in the smart city. We discovered that WoX+ satisfies most of the expected requirements, particularly in terms of unobtrusiveness of the solution, in contrast with the limitations observed in the existing studies. Finally, we used the responses given by the cohorts to generate synthetic data and train our novel AI block. Results show that the error in reconstructing the habits is acceptable: Mean Squared Error Percentage (MSEP) 0.04%

    An Efficient Reconfigurable Architecture for Fingerprint Recognition

    Get PDF
    The fingerprint identification is an efficient biometric technique to authenticate human beings in real-time Big Data Analytics. In this paper, we propose an efficient Finite State Machine (FSM) based reconfigurable architecture for fingerprint recognition. The fingerprint image is resized, and Compound Linear Binary Pattern (CLBP) is applied on fingerprint, followed by histogram to obtain histogram CLBP features. Discrete Wavelet Transform (DWT) Level 2 features are obtained by the same methodology. The novel matching score of CLBP is computed using histogram CLBP features of test image and fingerprint images in the database. Similarly, the DWT matching score is computed using DWT features of test image and fingerprint images in the database. Further, the matching scores of CLBP and DWT are fused with arithmetic equation using improvement factor. The performance parameters such as TSR (Total Success Rate), FAR (False Acceptance Rate), and FRR (False Rejection Rate) are computed using fusion scores with correlation matching technique for FVC2004 DB3 Database. The proposed fusion based VLSI architecture is synthesized on Virtex xc5vlx30T-3 FPGA board using Finite State Machine resulting in optimized parameters

    PATH: Person Authentication using Trace Histories

    Full text link
    In this paper, a solution to the problem of Active Authentication using trace histories is addressed. Specifically, the task is to perform user verification on mobile devices using historical location traces of the user as a function of time. Considering the movement of a human as a Markovian motion, a modified Hidden Markov Model (HMM)-based solution is proposed. The proposed method, namely the Marginally Smoothed HMM (MSHMM), utilizes the marginal probabilities of location and timing information of the observations to smooth-out the emission probabilities while training. Hence, it can efficiently handle unforeseen observations during the test phase. The verification performance of this method is compared to a sequence matching (SM) method , a Markov Chain-based method (MC) and an HMM with basic Laplace Smoothing (HMM-lap). Experimental results using the location information of the UMD Active Authentication Dataset-02 (UMDAA02) and the GeoLife dataset are presented. The proposed MSHMM method outperforms the compared methods in terms of equal error rate (EER). Additionally, the effects of different parameters on the proposed method are discussed.Comment: 8 pages, 9 figures. Best Paper award at IEEE UEMCON 201

    Demographic Bias in Presentation Attack Detection of Iris Recognition Systems

    Full text link
    With the widespread use of biometric systems, the demographic bias problem raises more attention. Although many studies addressed bias issues in biometric verification, there are no works that analyze the bias in presentation attack detection (PAD) decisions. Hence, we investigate and analyze the demographic bias in iris PAD algorithms in this paper. To enable a clear discussion, we adapt the notions of differential performance and differential outcome to the PAD problem. We study the bias in iris PAD using three baselines (hand-crafted, transfer-learning, and training from scratch) using the NDCLD-2013 database. The experimental results point out that female users will be significantly less protected by the PAD, in comparison to males.Comment: accepted for publication at EUSIPCO202

    An efficient multiscale scheme using local zernike moments for face recognition

    Get PDF
    In this study, we propose a face recognition scheme using local Zernike moments (LZM), which can be used for both identification and verification. In this scheme, local patches around the landmarks are extracted from the complex components obtained by LZM transformation. Then, phase magnitude histograms are constructed within these patches to create descriptors for face images. An image pyramid is utilized to extract features at multiple scales, and the descriptors are constructed for each image in this pyramid. We used three different public datasets to examine the performance of the proposed method:Face Recognition Technology (FERET), Labeled Faces in the Wild (LFW), and Surveillance Cameras Face (SCface). The results revealed that the proposed method is robust against variations such as illumination, facial expression, and pose. Aside from this, it can be used for low-resolution face images acquired in uncontrolled environments or in the infrared spectrum. Experimental results show that our method outperforms state-of-the-art methods on FERET and SCface datasets.WOS:000437326800174Scopus - Affiliation ID: 60105072Science Citation Index ExpandedQ2 - Q3ArticleUluslararası işbirliği ile yapılmayan - HAYIRMayıs2018YÖK - 2017-1
    corecore