27 research outputs found

    INSTA-BEEER: Explicit Error Estimation and Refinement for Fast and Accurate Unseen Object Instance Segmentation

    Full text link
    Efficient and accurate segmentation of unseen objects is crucial for robotic manipulation. However, it remains challenging due to over- or under-segmentation. Although existing refinement methods can enhance the segmentation quality, they fix only minor boundary errors or are not sufficiently fast. In this work, we propose INSTAnce Boundary Explicit Error Estimation and Refinement (INSTA-BEEER), a novel refinement model that allows for adding and deleting instances and sharpening boundaries. Leveraging an error-estimation-then-refinement scheme, the model first estimates the pixel-wise boundary explicit errors: true positive, true negative, false positive, and false negative pixels of the instance boundary in the initial segmentation. It then refines the initial segmentation using these error estimates as guidance. Experiments show that the proposed model significantly enhances segmentation, achieving state-of-the-art performance. Furthermore, with a fast runtime (less than 0.1 s), the model consistently improves performance across various initial segmentation methods, making it highly suitable for practical robotic applications.Comment: 8 pages, 5 figure

    Grasp Transfer based on Self-Aligning Implicit Representations of Local Surfaces

    Full text link
    Objects we interact with and manipulate often share similar parts, such as handles, that allow us to transfer our actions flexibly due to their shared functionality. This work addresses the problem of transferring a grasp experience or a demonstration to a novel object that shares shape similarities with objects the robot has previously encountered. Existing approaches for solving this problem are typically restricted to a specific object category or a parametric shape. Our approach, however, can transfer grasps associated with implicit models of local surfaces shared across object categories. Specifically, we employ a single expert grasp demonstration to learn an implicit local surface representation model from a small dataset of object meshes. At inference time, this model is used to transfer grasps to novel objects by identifying the most geometrically similar surfaces to the one on which the expert grasp is demonstrated. Our model is trained entirely in simulation and is evaluated on simulated and real-world objects that are not seen during training. Evaluations indicate that grasp transfer to unseen object categories using this approach can be successfully performed both in simulation and real-world experiments. The simulation results also show that the proposed approach leads to better spatial precision and grasp accuracy compared to a baseline approach.Comment: Accepted by IEEE RAL. 8 pages, 6 figures, 3 table
    corecore