306 research outputs found

    How Do You Like Me in This: User Embodiment Preferences for Companion Agents

    Get PDF
    We investigate the relationship between the embodiment of an artificial companion and user perception and interaction with it. In a Wizard of Oz study, 42 users interacted with one of two embodiments: a physical robot or a virtual agent on a screen through a role-play of secretarial tasks in an office, with the companion providing essential assistance. Findings showed that participants in both condition groups when given the choice would prefer to interact with the robot companion, mainly for its greater physical or social presence. Subjects also found the robot less annoying and talked to it more naturally. However, this preference for the robotic embodiment is not reflected in the users’ actual rating of the companion or their interaction with it. We reflect on this contradiction and conclude that in a task-based context a user focuses much more on a companion’s behaviour than its embodiment. This underlines the feasibility of our efforts in creating companions that migrate between embodiments while maintaining a consistent identity from the user’s point of view

    The end of the beginning: a reflection on the first five years of the HRI conference

    Get PDF
    This study presents a historical overview of the International Conference on Human Robot Interaction (HRI). It summarizes its growth, internationalization and collaboration. Rankings for countries, organizations and authors are provided. Furthermore, an analysis of the military funding for HRI papers is performed. Approximately 20% of the papers are funded by the US Military. The proportion of papers from the US is around 65% and the dominant role of the US is only challenged by the strong position of Japan, in particular by the contributions by ATR

    Robot Fast Adaptation to Changes in Human Engagement During Simulated Dynamic Social Interaction With Active Exploration in Parameterized Reinforcement Learning

    Get PDF
    International audienceDynamic uncontrolled human-robot interactions (HRIs) require robots to be able to adapt to changes in the human's behavior and intentions. Among relevant signals, non-verbal cues such as the human's gaze can provide the robot with important information about the human's current engagement in the task, and whether the robot should continue its current behavior or not. However, robot reinforcement learning (RL) abilities to adapt to these nonverbal cues are still underdeveloped. Here, we propose an active exploration algorithm for RL during HRI where the reward function is the weighted sum of the human's current engagement and variations of this engagement. We use a parameterized action space where a meta-learning algorithm is applied to simultaneously tune the exploration in discrete action space (e.g., moving an object) and in the space of continuous characteristics of movement (e.g., velocity, direction, strength, and expressivity). We first show that this algorithm reaches state-of-the-art performance in the nonstationary multiarmed bandit paradigm. We then apply it to a simulated HRI task, and show that it outper-forms continuous parameterized RL with either passive or active exploration based on different existing methods. We finally test the performance in a more realistic test of the same HRI task, where a practical approach is followed to estimate human engagement through visual cues of the head pose. The algorithm can detect and adapt to perturbations in human engagement with different durations. Altogether, these results suggest a novel efficient and robust framework for robot learning during dynamic HRI scenarios

    Exploring the role of trust and expectations in CRI using in-the-wild studies

    Get PDF
    Studying interactions of children with humanoid robots in familiar spaces in natural contexts has become a key issue for social robotics. To fill this need, we conducted several Child-Robot Interaction (CRI) events with the Pepper robot in Polish and Japanese kindergartens. In this paper, we explore the role of trust and expectations towards the robot in determining the success of CRI. We present several observations from the video recordings of our CRI events and the transcripts of free-format question-answering sessions with the robot using the Wizard-of-Oz (WOZ) methodology. From these observations, we identify children’s behaviors that indicate trust (or lack thereof) towards the robot, e.g., challenging behavior of a robot or physical interactions with it. We also gather insights into children’s expectations, e.g., verifying expectations as a causal process and an agency or expectations concerning the robot’s relationships, preferences and physical and behavioral capabilities. Based on our experiences, we suggest some guidelines for designing more effective CRI scenarios. Finally, we argue for the effectiveness of in-the-wild methodologies for planning and executing qualitative CRI studies
    • 

    corecore