48,709 research outputs found
Performance evaluation of 5G millimeter-wave cellular access networks using a capacity-based network deployment tool
The next fifth generation (5G) of wireless communication networks comes with a set of new features to satisfy the demand of data-intensive applications: millimeter-wave frequencies, massive antenna arrays, beamforming, dense cells, and so forth. In this paper, we investigate the use of beamforming techniques through various architectures and evaluate the performance of 5G wireless access networks, using a capacity-based network deployment tool. This tool is proposed and applied to a realistic area in Ghent, Belgium, to simulate realistic 5G networks that respond to the instantaneous bit rate required by the active users. The results show that, with beamforming, 5G networks require almost 15% more base stations and 4 times less power to provide more capacity to the users and the same coverage performances, in comparison with the 4G reference network. Moreover, they are 3 times more energy efficient than the 4G network and the hybrid beamforming architecture appears to be a suitable architecture for beamforming to be considered when designing a 5G cellular network
On the security of software-defined next-generation cellular networks
In the recent years, mobile cellular networks are ndergoing fundamental changes and many established concepts are being revisited. Future 5G network architectures will be designed to employ a wide range of new and emerging technologies such as Software Defined Networking (SDN) and Network Functions Virtualization (NFV). These create new virtual network elements each affecting the logic of the network management and operation, enabling the creation of new generation services with substantially higher data rates and lower delays. However, new security challenges and threats are also introduced. Current Long-Term Evolution (LTE) networks are not able to accommodate these new trends in a secure and reliable way. At the same time, novel 5G systems have proffered invaluable opportunities of developing novel solutions for attack prevention, management, and recovery. In this paper, first we discuss the main security threats and possible attack vectors in cellular networks. Second, driven by the emerging next-generation cellular networks, we discuss the architectural and functional requirements to enable
appropriate levels of security
5G green cellular networks considering power allocation schemes
It is important to assess the effect of transmit power allocation schemes on
the energy consumption on random cellular networks. The energy efficiency of 5G
green cellular networks with average and water-filling power allocation schemes
is studied in this paper. Based on the proposed interference and achievable
rate model, an energy efficiency model is proposed for MIMO random cellular
networks. Furthermore, the energy efficiency with average and water-filling
power allocation schemes are presented, respectively. Numerical results
indicate that the maximum limits of energy efficiency are always there for MIMO
random cellular networks with different intensity ratios of mobile stations
(MSs) to base stations (BSs) and channel conditions. Compared with the average
power allocation scheme, the water-filling scheme is shown to improve the
energy efficiency of MIMO random cellular networks when channel state
information (CSI) is attainable for both transmitters and receivers.Comment: 14 pages, 7 figure
- …
