22 research outputs found

    Resistive communications based on neuristors

    Full text link
    Memristors are passive elements that allow us to store information using a single element per bit. However, this is not the only utility of the memristor. Considering the physical chemical structure of the element used, the memristor can function at the same time as memory and as a communication unit. This paper presents a new approach to the use of the memristor and develops the concept of resistive communication

    Ultra-wideband pentagonal fractal antenna with stable radiation characteristics for microwave imaging applications

    Get PDF
    For microwave imaging applications, a design for an ultra-wideband (UWB) fractal antenna is presented. The antenna design is composed of a pentagonal fractal patch radiator fed by a modified co-planar waveguide (CPW) ground plane. It is built on a low-loss Rogers RT/Duroid 5880 dielectric substrate with a dimensions of 24 × 30 × 0.787 mm3. According to the measurements, the designed antenna offers a fractional bandwidth of 123.56% ranging from 3 GHz to 12.7 GHz. In addition, a maximum gain of 3.6 dBi is achieved at 8.5 GHz. From the results, it is also observed that the proposed antenna structure attains constant radiation characteristics in the operating bandwidth, which is useful for microwave imaging applications. The time domain analysis of the proposed design is also performed, and it is observed that the designed antenna offers a group delay of ≤1.5 ns, which ensures minimum pulse distortion

    Image Zooming using Corner Matching

    Get PDF
    This work was intended to direct the choice of an image interpolation/zoom algorithm for use in UND’s Open Prototype for Educational Nanosats (OPEN) satellite program. Whether intended for a space-borne platform or a balloon-borne platform, we expect to use a low cost camera (Raspberry Pi) and expect to have very limited bandwidth for image transmission. However, the technique developed could be used for any imaging application. The approach developed analyzes overlapping 3x3 blocks of pixels looking for “L” patterns that suggest the center pixel should be changed such that a triangle pattern results. We compare this approach against different types of single-frame image interpolation algorithms, such as zero-order-hold (ZOH), bilinear, bicubic, and the directional cubic convolution interpolation (DCCI) approach. We use the peak signal-to-noise ratio (PSNR) and mean squared error (MSE) as the primary means of comparison. In all but one of the test cases the proposed method resulted in a lower MSE and higher PSNR than the other methods. Meaning this method results in a more accurate image after zooming than the other methods

    Development of an EMG-controlled mobile robot

    Get PDF
    This paper presents the development of a Robot Operating System (ROS)-based mobile robot control using electromyography (EMG) signals. The proposed robot’s structure is specifically designed to provide modularity and is controlled by a Raspberry Pi 3 running on top of an ROS application and a Teensy microcontroller. The EMG muscle commands are sent to the robot with hand gestures that are captured using a Thalmic Myo Armband and recognized using a k-Nearest Neighbour (k-NN) classifier. The robot’s performance is evaluated by navigating it through specific paths while solely controlling it through the EMG signals and using the collision avoidance approach. Thus, this paper aims to expand the research on the topic, introducing a more accurate classification system with a wider set of gestures, hoping to come closer to a usable real-life applicatio

    Internet of Things (IoT) Platform for Structure Health Monitoring

    Get PDF

    Development of an EMG-controlled mobile robot

    Get PDF
    This paper presents the development of a Robot Operating System (ROS)-based mobile robot control using electromyography (EMG) signals. The proposed robot’s structure is specifically designed to provide modularity and is controlled by a Raspberry Pi 3 running on top of an ROS application and a Teensy microcontroller. The EMG muscle commands are sent to the robot with hand gestures that are captured using a Thalmic Myo Armband and recognized using a k-Nearest Neighbour (k-NN) classifier. The robot’s performance is evaluated by navigating it through specific paths while solely controlling it through the EMG signals and using the collision avoidance approach. Thus, this paper aims to expand the research on the topic, introducing a more accurate classification system with a wider set of gestures, hoping to come closer to a usable real-life applicatio

    Analog Implementation of Fractional-Order Elements and Their Applications

    Get PDF
    With advancements in the theory of fractional calculus and also with widespread engineering application of fractional-order systems, analog implementation of fractional-order integrators and differentiators have received considerable attention. This is due to the fact that this powerful mathematical tool allows us to describe and model a real-world phenomenon more accurately than via classical “integer” methods. Moreover, their additional degree of freedom allows researchers to design accurate and more robust systems that would be impractical or impossible to implement with conventional capacitors. Throughout this thesis, a wide range of problems associated with analog circuit design of fractional-order systems are covered: passive component optimization of resistive-capacitive and resistive-inductive type fractional-order elements, realization of active fractional-order capacitors (FOCs), analog implementation of fractional-order integrators, robust fractional-order proportional-integral control design, investigation of different materials for FOC fabrication having ultra-wide frequency band, low phase error, possible low- and high-frequency realization of fractional-order oscillators in analog domain, mathematical and experimental study of solid-state FOCs in series-, parallel- and interconnected circuit networks. Consequently, the proposed approaches in this thesis are important considerations in beyond the future studies of fractional dynamic systems

    Analytical Modeling of a Doubly Clamped Flexible Piezoelectric Energy Harvester with Axial Excitation and Its Experimental Characterization

    Get PDF
    With the rapid development of wearable electronics, novel power solutions are required to adapt to flexible surfaces for widespread applications, thus flexible energy harvesters have been extensively studied for their flexibility and stretchability. However, poor power output and insufficient sensitivity to environmental changes limit its widespread application in engineering practice. A doubly clamped flexible piezoelectric energy harvester (FPEH) with axial excitation is therefore proposed for higher power output in a low-frequency vibration environment. Combining the Euler–Bernoulli beam theory and the D’Alembert principle, the differential dynamic equation of the doubly clamped energy harvester is derived, in which the excitation mode of axial load with pre-deformation is considered. A numerical solution of voltage amplitude and average power is obtained using the Rayleigh–Ritz method. Output power of 22.5 μW at 27.1 Hz, with the optimal load resistance being 1 MΩ, is determined by the frequency sweeping analysis. In order to power electronic devices, the converted alternating electric energy should be rectified into direct current energy. By connecting to the MDA2500 standard rectified electric bridge, a rectified DC output voltage across the 1 MΩ load resistor is characterized to be 2.39 V. For further validation of the mechanical-electrical dynamical model of the doubly clamped flexible piezoelectric energy harvester, its output performances, including both its frequency response and resistance load matching performances, are experimentally characterized. From the experimental results, the maximum output power is 1.38 μW, with a load resistance of 5.7 MΩ at 27 Hz, and the rectified DC output voltage reaches 1.84 V, which shows coincidence with simulation results and is proved to be sufficient for powering LED electronics

    A Modulator-less Beam Steering Transmitter based on a revised DDS-PLL Phase Shifter Architecture

    Get PDF
    This paper details the design and implementation of a modulator-less beam steering transmitter based on a revised DDS-PLL phase shifter architecture. The proposed topology targets low data rate communications for Internet-of-Things systems, and has been demonstrated using an FPGA evaluation board and a custom PCB with four PLLs centered at 2.453-GHz. Measured system performance for an experimental 32-kbps data rate achieved through a 16-PSK modulation scheme are discussed. The proposed architecture is frequency independent, can be used in multi-band devices and has the potential for being integrated as an RF System-on-Chip
    corecore