32 research outputs found

    Tuning Knobs for the NLC Final Focus

    Full text link
    Compensation of optics errors at the Interaction Point (IP) is essential for maintaining maximum luminosity at the NLC. Several correction systems (knobs) using the Final Focus sextupoles have been designed to provide orthogonal compensation of linear and the second order optics aberrations at IP. Tuning effects of these knobs on the 250 GeV beam were verified using tracking simulations.Comment: 4 pages, 3 figure

    Summary of Laser-wire Mini Workshop

    Get PDF
    A summary is presented of the laser-wire mini workshop held as part of Nanobeam 2005. Topics that were covered include machine optics studies of the ILC diagnostics section, simulation of laser-wires in the ILC beam delivery system, the development of pulsed laser stacking plus applications, a laser interferometer in an optical cavity, fast laser-wire scanning with electro-optics, and status reports on the ATF and PETRA laser-wire systems

    Test Beams and Polarized Fixed Target Beams at the NLC

    Get PDF
    A conceptual program to use NLC beams for test beams and fixed target physics is described. Primary undisrupted polarized beams would be the most simple to use, but for NLC, the disrupted beams are of good enough quality that they could also be used, after collimation of the low energy tails, for test beams and fixed target physics. Pertinent issues are: what is the compelling physics, what are the requirements on beams and running time, and what is the impact on colliding beam physics running. A list of physics topics is given; one topic Moller Scattering is treated in more depth.Comment: 10 pages, 5 figures, Fifth International Linear Collider Workshop (LCWS2000), Fermi National Accelerator Laboratory, Batavia, Illinois, US, October 24-28, 200

    Heavy neutral fermions at the high-luminosity LHC

    Full text link
    Long-lived light particles (LLLPs) appear in many extensions of the standard model. LLLPs are usually motivated by the observed small neutrino masses, by dark matter or both. Typical examples for fermionic LLLPs (a.k.a. heavy neutral fermions, HNFs) are sterile neutrinos or the lightest neutralino in R-parity violating supersymmetry. The high luminosity LHC is expected to deliver up to 3/ab of data. Searches for LLLPs in dedicated experiments at the LHC could then probe the parameter space of LLLP models with unprecedented sensitivity. Here, we compare the prospects of several recent experimental proposals, FASER, CODEX-b and MATHUSLA, to search for HNFs and discuss their relative merits.Comment: 21 pages, 6 figures; v2:references and minor comments added, plots update

    A Collective Breaking of R-Parity

    Full text link
    Supersymmetric theories with an R-parity generally yield a striking missing energy signature, with cascade decays concluding in a neutralino that escapes the detector. In theories where R-parity is broken the missing energy is replaced with additional jets or leptons, often making traditional search strategies ineffective. Such R-parity violation is very constrained, however, by resulting B and L violating signals, requiring couplings so small that LSPs will decay outside the detector in all but a few scenarios. In theories with additional matter fields, R-parity can be broken collectively, such that R-parity is not broken by any single coupling, but only by an ensemble of couplings. Cascade decays can proceed normally, with each step only sensitive to one or two couplings at a time, but B and L violation requires the full set, yielding a highly suppressed constraint. s-channel production of new scalar states, typically small for standard RPV, can be large when RPV is broken collectively. While missing energy is absent, making these models difficult to discover by traditional SUSY searches, they produce complicated many object resonances (MORes), with many different possible numbers of jets and leptons. We outline a simple model and discuss its discoverability at the LHC.Comment: 28 pages, 10 figure
    corecore