9 research outputs found

    500+ Times Faster Than Deep Learning (A Case Study Exploring Faster Methods for Text Mining StackOverflow)

    Full text link
    Deep learning methods are useful for high-dimensional data and are becoming widely used in many areas of software engineering. Deep learners utilizes extensive computational power and can take a long time to train-- making it difficult to widely validate and repeat and improve their results. Further, they are not the best solution in all domains. For example, recent results show that for finding related Stack Overflow posts, a tuned SVM performs similarly to a deep learner, but is significantly faster to train. This paper extends that recent result by clustering the dataset, then tuning very learners within each cluster. This approach is over 500 times faster than deep learning (and over 900 times faster if we use all the cores on a standard laptop computer). Significantly, this faster approach generates classifiers nearly as good (within 2\% F1 Score) as the much slower deep learning method. Hence we recommend this faster methods since it is much easier to reproduce and utilizes far fewer CPU resources. More generally, we recommend that before researchers release research results, that they compare their supposedly sophisticated methods against simpler alternatives (e.g applying simpler learners to build local models)

    Use and misuse of the term "Experiment" in mining software repositories research

    Get PDF
    The significant momentum and importance of Mining Software Repositories (MSR) in Software Engineering (SE) has fostered new opportunities and challenges for extensive empirical research. However, MSR researchers seem to struggle to characterize the empirical methods they use into the existing empirical SE body of knowledge. This is especially the case of MSR experiments. To provide evidence on the special characteristics of MSR experiments and their differences with experiments traditionally acknowledged in SE so far, we elicited the hallmarks that differentiate an experiment from other types of empirical studies and characterized the hallmarks and types of experiments in MSR. We analyzed MSR literature obtained from a small-scale systematic mapping study to assess the use of the term experiment in MSR. We found that 19% of the papers claiming to be an experiment are indeed not an experiment at all but also observational studies, so they use the term in a misleading way. From the remaining 81% of the papers, only one of them refers to a genuine controlled experiment while the others stand for experiments with limited control. MSR researchers tend to overlook such limitations, compromising the interpretation of the results of their studies. We provide recommendations and insights to support the improvement of MSR experiments.This work has been partially supported by the Spanish project: MCI PID2020-117191RB-I00.Peer ReviewedPostprint (author's final draft

    Text Classification: A Review, Empirical, and Experimental Evaluation

    Full text link
    The explosive and widespread growth of data necessitates the use of text classification to extract crucial information from vast amounts of data. Consequently, there has been a surge of research in both classical and deep learning text classification methods. Despite the numerous methods proposed in the literature, there is still a pressing need for a comprehensive and up-to-date survey. Existing survey papers categorize algorithms for text classification into broad classes, which can lead to the misclassification of unrelated algorithms and incorrect assessments of their qualities and behaviors using the same metrics. To address these limitations, our paper introduces a novel methodological taxonomy that classifies algorithms hierarchically into fine-grained classes and specific techniques. The taxonomy includes methodology categories, methodology techniques, and methodology sub-techniques. Our study is the first survey to utilize this methodological taxonomy for classifying algorithms for text classification. Furthermore, our study also conducts empirical evaluation and experimental comparisons and rankings of different algorithms that employ the same specific sub-technique, different sub-techniques within the same technique, different techniques within the same category, and categorie
    corecore